	TM abbreviation		
	DDLM		
Faculty			
Frequency of supply			
Teaching form			

Semester of study	Teaching scope	Teaching language	Work effort
according to			
curriculum	[SWS or UE]		[ECTS credits]
	4	English	5

Time commitment:

Classroom study	Self-study

Study and examination performance

Each week: slides covering a theme, with both methodological, applicative and implementation issues.

Evaluation

- Weekly programming assignments which should be done on an individual basis (not evaluated).
- Final exam: challenge (gathering knowledge collected during the programming assignments).

Contents

- Introductory course
 - o Introduction to Machine Learning and Deep Learning
 - o Introduction to the development tools
- Artificial neural networks: perceptron and multilayer perceptron
 - o Artificial neuron model
 - Perceptron
 - Multilayer perceptron
 - Backpropagation algorithm
- Convolutional neural Networks
 - o Layers definition
 - o Initialization
 - o Regularization
 - Explainability
- Recurrent Neural Networks & Transformers
 - o RNN training
 - LSTM and GRU
 - Transformers

- Autoencoders
 - Definition
 - Sparse, contrastive and denoising autoencoders
- Transfer Learning
 - Some classical deep neural networks
 - Transfer learning and fine tuning
- Generative models
 - Generative Adversarial Networks
 - Variational Autoencoders
 - o Diffusion models
 - o LLMs

Learning objectives: Professional competence

After successful completion of the submodule, students are able to:

- Understand Machine Learning paradigms (2)
- Understand Deep Learning paradigm and architectures (2)
- Analyse a classification or regression problems and solve using Deep Learning approaches (3)
- Code and Employ Neural Networks and Deep Learning Architectures (2,3)

Learning objectives: Personal competence

After successful completion of the submodule, students are able to:

- Read, write, and present in an academic environment in English language (3)
- Interactively discuss subject-matter topics with other students and reflect their viewpoints (3)
- Organize themselves independently (3)
- Create work results with certain boundary conditions set for a given due date (3)

Teaching media

Slides (pdf), Jupyter notebooks, videos.

Literature

- I Goodfellow, Y Bengio and A Courville, A. Deep Learning. MIT Press, 2016 (https://www.deeplearn-ingbook.org)
- S Haykin. Neural networks and machine learning, Prentice Hall, 2008.
- F Chollet, Deep Learning with Python, Manning, 2018
- S Russel, P Norvig, Artificial Intelligence: A Modern Approach, 2022 (https://aima.cs.berkeley.edu)
- E Stevens, L Antiga, T Viehmann, Deep Learning wth PyTorch, Manning, 2020

The numbers in brackets indicate the levels to be reached: 1 - know, - 2can, - 3understand and apply