
Undergraduate programme title:
International Computer Science

Module title:
Global Software Engineering

Module title Module code
Global Software Engineering

Person responsible for the module Faculty
Prof. Felix Schwägerl Computer Science and Mathematics

Semester taught
according to the
curriculum

Level of study Module type Credit value

3.  2. mandatory 8 

Mandatory requirements
At least 30 credits from the 1st study stage
Recommended previous knowledge
Programming 1 and Programming 2

Content
see next page

Assigned submodules
Nr. Submodule title Teaching hours Credit value
1. Global Software Engineering 6 SWS 8 

Last updated: 04.03.2024 Ostbayerische Technische Hochschule Regensburg Page 55



Undergraduate programme title:
International Computer Science

Module title:
Global Software Engineering

Submodule Submodule abbreviation
Global Software Engineering GSE

Responsible person Faculty
Prof. Felix Schwägerl Computer Science and Mathematics
Lecturer Availablilty of module
Prof. Dr. Carsten Kern
Prof. Felix Schwägerl

only in winter semester

Teaching method
Seminar teaching with exercises (4 SWS) and practical course (2 SWS)

Semester taught
according to the
curriculum

Teaching hours Teaching language Credit value

3.  6 SWS english 8 

Study hours required
Hours in attendance/lectures Hours for self-study
90h 150h

Method of assessment
Written exam: 90 minutes

Content
• Basics of software engineering (motivation, definitions, ethics, role of models)
• Phases, disciplines, and processes (phase models, iterative, spiral model, V model)
• Agile software development (manifesto, principles, Scrum, empirical process improvement)
• Requirements engineering (definitions, gathering techniques, attributes, templates)
• Object-oriented analysis (use case models, domain models, behavior/interaction models)
• Software architecture (views, evaluation criteria, architectural styles, documentation)
• Fine-grained design (refinement, implementation in Java, design principles, design

patterns)
• Testing (regression, refactoring, unit tests, code coverage, test-driven development)
• Quality assurance (verification/validation, coverage, continuous integration, acceptance

tests)
• Deployment and maintenance (delivery, software evolution, predictive maintenance)
• DevOps engineering (continuous deployment, containers, infrastructure as code,

monitoring)
• Project management and planning (risk management, team management, cost estimation)
• Software version management (revision logs, branching, tagging, conflict resolution)
• Global software development (motivations, socio-technical challenges, methods, tools)

Learning objectives: Subject competence

After successful completion of the submodule, students are able to,
• Know and reproduce the ways of thinking and procedures of software engineering (1).

Last updated: 04.03.2024 Ostbayerische Technische Hochschule Regensburg Page 56



Undergraduate programme title:
International Computer Science

Module title:
Global Software Engineering

• Express awareness about the importance, difficulties and possibilities of software
engineering and its disciplines (1).

• Select, tailor, and improve the software development process suitable for a specific project
or product (2).

• Use standardized modeling notations on an adequate level of detail and utilize models’
ability to break down software engineering tasks by abstracting from requirements,
software, and hardware (3).

• Document the results of requirements engineering, object-oriented analysis and fine-
grained design using adequate language, terms, and formalisms (2).

• Systematically specify, design, implement, verify, and deliver a software system with limited
extent using suitable engineering methodologies and an object-oriented programming
language like Java (3).

• Apply appropriate software quality assurance metrics, methods, and tools to existing
systems or systems under development (2).

• Select and apply suitable methods and tools for project management, software
maintenance, and software version management (3).

• Explain (1) and classify (2) the specific challenges, methods, and tools occurring in
international, intercultural, and interdisciplinary software engineering teams.

Learning objectives: Personal competence

After successful completion of the submodule, students are able to,
• Understand how the specifics of global software development impact each discipline of

software engineering (1).
• Theoretically know how to collaborate with clients or managers to gather software

requirements and help them make informed business decisions based on technical facts
(1).

• Ask the crucial questions for being able to select adequate methods and tools for each
discipline of software engineering (2).

• Assess analysis, design and implementation artifacts produced by team members
according to well-defined criteria and communicate constructive feedback effectively and
adequately (2).

• Coordinate the activities of software engineering teams and deal with challenges such as
stress, motivation, or conflicts (2).Adopt different roles in software engineering teams with
different responsibilities therein (3).

Teaching materials offered
Copies of slides, exercises, code examples, materials from case studies, templates

Teaching media
Laptop, beamer, blackboard

Last updated: 04.03.2024 Ostbayerische Technische Hochschule Regensburg Page 57



Undergraduate programme title:
International Computer Science

Module title:
Global Software Engineering

Literature
• Ian Sommerville: Software Engineering, 10th edition, Pearson, 2016
• Ian Sommerville: Engineering Software Products, Pearson, 2021
• Ken Schwaber, Jeff Sutherland: Scrum Guide, Creative Commons, 2020
• Klaus Pohl, Chris Rupp: Requirements Engineering Fundamentals, RockyNook, 2015
• Grady Booch et al.: Object-Oriented Analysis and Design with Applications, 3rd edition,

Addison-Wesley, 2007
• Mark Richards, Neil Ford: Fundamentals of Software Architecture, O’Reilly, 2020
• Erich Gamma et al: Design Patterns, Addison-Wesley, 2009
• Robert C. Martin: Clean Code, Prentice Hall, 2009
• Shekhar Gulati, Rahul Sharma: Java Unit Testing with JUnit 5, Apress, 2017
• Paul Ammann, Jeff Offutt: Introduction to Software Testing, Cambridge University Press,

2016
• Gene Kim et al.: The DevOps Handbook, IT Revolution Press, 2016
• Scott Chacon, Ben Straub: Pro Git, Apress, 2014
• Pierre Bourque, Dick Fairley: Software Engineering Body of Knowledge (SWEBOK), v3,

IEEE Computer Society, 2014
• James D. Herbsleb: Global software engineering in the age of GitHub and Zoom. J. Softw.

Evol. Process. 35(6), 2023 [and previous work referenced by the author]

The numbers in brackets indicate the levels to be reached: 1 - understanding 2 - ability 3 - understand and application

Last updated: 04.03.2024 Ostbayerische Technische Hochschule Regensburg Page 58


