Modulhandbuch

für den
Bachelorstudiengang

Medizinische Informatik
(B.Sc.)

(Basis: SPO v. 01.08.2012; Änderungssatzung v. 28.08.2017)

Sommersemester 2024
gültig für Studierende mit Studienbeginn ab dem Wintersemester 2017/2018

erstellt am 04.04.2024

Fakultät Informatik und Mathematik
Ausbildungsziele

Wie jede*r Informatiker*in, muss ein*e Medizininformatiker*in Probleme erkennen und analysieren, Modelle bilden und konkrete Lösungen entwickeln. Voraussetzung für diese Aufgabe ist, dass er/sie grundlegende Methoden aus der Mathematik und der Informatik beherrscht und erfolgreich einsetzen kann. Von dem/der „normalen“ Informatiker*in unterscheidet ihn/sie ein solides Grundlagenwissen in seinem/ihrer Anwendungsfach - der Medizin und dem Gesundheitswesen.

Ziel des Bachelor-Studiengangs „Medizinische Informatik“ ist es, die Absolventen*innen optimal auf diese Aufgaben vorzubereiten, damit sie sich im späteren Berufsleben als qualifizierte Angestellte oder Selbständige behaupten können. Es wird besonderer Wert darauf gelegt, dass Studierende die Fähigkeit erwerben, sich gezielt und selbständig in neue Themengebiete einarbeiten. Zusammen mit einer breit angelegten Informatikausbildung kann so sichergestellt werden, dass Absolventinnen und Absolventen der Medizinischen Informatik auch in Bereichen außerhalb des Gesundheitswesens und der Medizin einsetzbar sind. Konkrete Ausbildungsziele sind:

G1: Kenntnis des Aufbaus, sowie der Möglichkeiten und Grenzen von Systemen der Informationstechnik
G2: Beherrschung elementarer Methoden der Mathematik und der Informatik zur Analyse und Modellierung
G3: Fähigkeit zur ingenieurmäßigen Planung und Erstellung von Software-Systemen, sowohl in fachlicher, als auch in planerischer und organisatorischer Hinsicht
G4: Grundlegende Fähigkeit zum wissenschaftlichen Arbeiten
G5: Grundverständnis anatomischer und physiologischer Zusammenhänge für die wichtigsten Krankheitsbilder
G6: Verständnis des deutschen Gesundheitssystems und der zentralen Abläufe in Organisationen des Gesundheitswesens sowie der betriebswirtschaftlichen Zusammenhänge
G7: Verantwortungsbewusstes Arbeiten in Teams
G8: Fähigkeit zum selbständigen Einarbeiten in Spezialgebiete

Im Rahmen der Modulbeschreibungen finden Sie die Beiträge, die die einzelnen Module zur Erreichung der Ausbildungsziele leisten.
Modulliste

Studienabschnitt 1:

Allgemeinwissenschaftliches Wahlpflichtmodul (Mandatory General Studies: Elective Module 1)................. 6
Lehrveranstaltungen nach Angaben des aktuellen AW-Katalogs.. 7
Einführung in die Medizin (Medical Basics).. 9
 Einführung in die Medizin 1... 10
 Einführung in die Medizin 2... 12
Mathematische Grundlagen (Mathematical Foundations)... 14
 Mathematik 1.. 15
 Mathematik 2 (Analysis).. 17
Medizinische Informationssysteme (Medical Information Systems)... 20
 Medizinische Informationssysteme.. 21
Programmieren (Programming)... 23
 Programmieren 1... 24
 Programmieren 2 (C++)... 27
Technische Grundlagen der Informatik (Technology in Informatics)... 29
 Technische Grundlagen der Informatik... 30
Theoretische Informatik (Theoretical Computer Science)... 32
 Theoretische Informatik... 33

Studienabschnitt 2:

Algorithmen und Datenstrukturen (Algorithms and Data Structures).. 35
 Algorithmen und Datenstrukturen.. 36
Allgemeinwissenschaftliches Wahlpflichtmodul 2 (Mandatory General Studies: Elective Module 2).... 38
 Lehrveranstaltungen nach Angaben des aktuellen AW-Kataloges.................................. 39
Betriebssysteme (Operating Systems)... 41
 Betriebssysteme... 42
Biometrie (Biometrics).. 44
 Biometrie... 45
Datenbanken (Databases).. 47
 Datenbanken... 48
Kommunikationssysteme (Networking)... 50
 Kommunikationssysteme-IM... 51
Medizinische Bildverarbeitung (Medical Image Processing).. 53
 Medizinische Bildverarbeitung... 54
Medizinische Dokumentation (Medical Documentation).. 58
 Medizinische Dokumentation 1... 59
 Medizinische Dokumentation 2... 61
Medizinisches Praktikum (Hands-On Medicine).. 63
 Medizinisches Praktikum... 64
Medizinrecht (Regulations and Legal Affairs).. 66
 Medizinrecht... 67
Physik (Physics)... 69
 IM Physik.. 70
Praktikum mit Praxisseminar (Industrial Placement)... 72
 Praktikum mit Praxisseminar... 73
Software Engineering... 75
 Software Engineering... 76
Softwarepraktikum (Practical Course in Software Design)... 78
 Softwarepraktikum.. 79
Studienabschnitt 3:

Angewandte Medizintechnik (Applied Medical Engineering) ... 81
Angewandte Medizintechnik ... 82
Bachelorarbeit (Bachelor thesis) ... 84
Bachelorarbeit (Bachelor thesis) ... 85
Bachelorseminar (Bachelor seminar) .. 87
Bachelorseminar (Bachelor seminar) .. 88
Bildverarbeitung und 3D-Visualisierung (Image Processing and 3D-visualization) ... 90
Bildverarbeitung und 3D-Visualisierung .. 91
eHealth Grundlagen ... 94
eHealth Grundlagen ... 95
Fachbezogenes Wahlpflichtmodul 1 ... 97
Fachbezogenes Wahlpflichtmodul 2 ... 98
Gesundheitsökonomie (Health Economy and Processes) .. 99
Gesundheitsökonomie .. 100
Klinische Anwendungen ... 102
 Klinische Anwendungen 1 - Radiologie ... 103
 Klinische Anwendungen 2 - NuKlearmedizin ... 105
Laborpraktikum (Lab course) .. 107
Laborpraktikum ... 108
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Allgemeinwissenschaftliches Wahlpflichtmodul (Mandatory General Studies: Elective Module 1)

Modulbezeichnung (ggf. englische Bezeichnung)	ModulkzBez. oder Nr.
Allgemeinwissenschaftliches Wahlpflichtmodul (Mandatory General Studies: Elective Module 1) | 7

Modulverantwortliche/r	Fakultät
Prof. Dr. Gabriele Blod | Angewandte Natur- und Kulturwissenschaften

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
2. | 1. | Wahlpflicht | 2

Verpflichtende Voraussetzungen
in der Regel keine, außer bei aufeinander aufbauenden Kursen

Empfohlene Vorkenntnisse
in der Regel keine, außer bei aufeinander aufbauenden Kursen

Inhalte
- Vermittlung von Orientierungswissen und Allgemeinbildung
- Vermittlung und Training von Schlüsselkompetenzen (z.B. Zusatzzertifikat "Soft Skills")
- Vermittlung und Training von Fremdsprachen

Lernziele: Fachkompetenz
Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen Fachkompetenzen zu verstehen und anzuwenden.

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen persönlichen Kompetenzen intellektuell einzuordnen und praktisch umzusetzen.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Lehrveranstaltungen nach Angaben des aktuellen AW-Katalogs</td>
<td>2 SWS</td>
<td>2</td>
</tr>
</tbody>
</table>

Stand: 04.04.2024

Ostbayerische Technische Hochschule Regensburg
Teilmodul

<table>
<thead>
<tr>
<th>Lehrveranstaltungen nach Angaben des aktuellen AW-Katalogs</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortliche/r</td>
<td>Fakultät</td>
</tr>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Abhängig von der ausgewählten Lehrveranstaltung

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>30h</td>
</tr>
</tbody>
</table>

Klausur oder Studienarbeit oder mündlicher Leistungsnachweis

Inhalte

Abhängig von der ausgewählten Lehrveranstaltung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen Fachkompetenzen zu verstehen und anzuwenden.

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen persönlichen Kompetenzen intellektuell einzuordnen und praktisch umzusetzen.

Lehrmedien

Abhängig von der ausgewählten Lehrveranstaltung

Literatur

Abhängig von der ausgewählten Lehrveranstaltung
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Allgemeinwissenschaftliches Wahlpflichtmodul
(Mandatory General Studies: Elective Module 1)

Weitere Informationen zur Lehrveranstaltung

AW-Modul 1: frei wählbar aus dem gesamten AW-Angebot mit folgenden Ausnahmen:
- Module aus dem Bereich EDV
- Module der VHB des Themenbereichs Internetkompetenz oder anderer Informatikbezogener Themen
- Modul „3-D-Druck“ aus dem Bereich Naturwissenschaft und Technik
- Modul „Einführung in Künstliche Intelligenz und Maschinelles Lernen“ aus dem Bereich Sozial- und Methodenkompetenz: Block 5

Zuordnung zu Ausbildungszielen:
- G7: Verantwortungsbewusstes Arbeiten in Teams
- G8: Fähigkeit zum selbstständigen Einarbeiten in Spezialgebiet

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Einführung in die Medizin (Medical Basics)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in die Medizin (Medical Basics)</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael Reng (LB)</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>10</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
keine

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Einführung in die Medizin 1</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Einführung in die Medizin 2</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 04.04.2024

Ostbayerische Technische Hochschule Regensburg
Teilmodul	TM-Kurzbezeichnung
Einführung in die Medizin 1 | EM1

Verantwortliche/r	Fakultät
Dr. Michael Reng (LB) | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Dr. Michael Reng (LB) |

Lehrform
Seminaristischer Unterricht (2 SWS) mit Blockpraktikum (2 SWS)

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Prämienstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Schriftliche Prüfung: 90 Min

Inhalte
- Medizinische Terminologie an praktischen Beispielen
- Anatomie an praktischen Beispielen
- Physiologie an praktischen Beispielen
- Vorstellung medizinischer Fachgebiete sowie des medizinischen Arbeitsumfelds (Praktikum)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die kontextbezogene Bedeutung medizinspezifischer Terminologie zu verstehen und sie adäquat selbst zu nutzen (1),
- die Grundzüge menschlicher Anatomie und Physiologie wiederzugeben (1),
- pathophysiologische Grundkonzepte zu nennen und deren Bedeutung als Grundlage für medizinische Diagnostik und Therapie zu reflektieren (1),
- verschiedene medizinische Fachgebiete darzustellen (1).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fachliche Fragen zu stellen und Fragen der Dozentinnen und Dozenten angemessen zu beantworten (1),
- sich mit der Medizin in eine für Informatikerinnen und Informatiker fachfremde Sichtweise einzudenken und andere Perspektiven einzunehmen (1),
- die gesellschaftliche Relevanz des eigenen Fachgebietes einzuschätzen (1).
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folienkopien</td>
</tr>
<tr>
<td>Skript</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung und Blockpraktikum zusammen 4 SWS</td>
</tr>
<tr>
<td>Zuordnung zu Ausbildungszielen:</td>
</tr>
<tr>
<td>• G5: Grundverständnis anatomischer und physiologischer Zusammenhänge für die wichtigsten Krankheitsbilder</td>
</tr>
<tr>
<td>• G6: Verständnis des deutschen Gesundheitssystems und der zentralen Abläufe in Organisationen des Gesundheitswesens</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Einführung in die Medizin (Medical Basics)

Teilmodul

<table>
<thead>
<tr>
<th>Einführung in die Medizin 2</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EM2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael Reng (LB)</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Dr. Michael Reng (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht (2 SWS) mit Blockpraktikum (2 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: 90 Min</td>
</tr>
</tbody>
</table>

Inhalte

- Medizinische Terminologie an praktischen Beispielen
- Anatomie an praktischen Bespielen
- Physiologie an praktischen Bespielen
- Vorstellung medizinischer Fachgebiete sowie des medizinischen Arbeitsumfelds (Praktikum)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die kontextbezogene Bedeutung medizinspezifischer Terminologie zu verstehen und sie adäquat selbst zu nutzen (2),
- die Grundzüge menschlicher Anatomie und Physiologie wiederzugeben (2),
- pathophysiologische Grundkonzepte zu nennen und deren Bedeutung als Grundlage für medizinische Diagnostik und Therapie zu reflektieren (2),
- verschiedene medizinische Fachgebiete darzustellen (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fachliche Fragen zu stellen und Fragen der Dozentinnen und Dozenten angemessen zu beantworten (2),
- sich mit der Medizin in eine für Informatikerinnen und Informatiker fachfremde Sichtweise einzudenken und andere Perspektiven einzunehmen (2),
- die gesellschaftliche Relevanz des eigenen Fachgebietes einzuschätzen (2).
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Folienkopien</td>
</tr>
<tr>
<td>Skript</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung und Blockpraktikum zusammen 4 SWS</td>
</tr>
</tbody>
</table>

Zuordnung zu Ausbildungszielen:
G5: Grundverständnis anatomischer und physiologischer Zusammenhänge für die wichtigsten Krankheitsbilder

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Mathematische Grundlagen (Mathematical Foundations) | 1

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rainer Löschel</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Prof. Dr. Martin Pohl</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>14</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Besuch des Mathematik-Vorkurses

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Mathematik 1</td>
<td>6 SWS</td>
<td>7</td>
</tr>
<tr>
<td>2.</td>
<td>Mathematik 2 (Analysis)</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>
Teilmodul: Mathematik 1
TM-Kurzbezeichnung: MA1

Verantwortliche/r: Prof. Dr. Rainer Löschel
Fakultät: Informatik und Mathematik

Lehrende/r / Dozierende/r:
- Prof. Dr. Hans Kiesl
- Prof. Dr. Stefan Körkel
- Prof. Dr. Rainer Löschel
- Prof. Dr. Martin Pohl
- Dr. Gabriela Tapken (LBA)
- Prof. Dr. Martin Weiß

Lehrform
Seminaristischer Unterricht mit Übungen (6 SWS)

Studiensemester
gemäß Studienplan

Lehrumfang
Lehrsprache
Arbeitsaufwand

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>[SWS oder UE]</th>
<th>[ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium: 6 SWS
- Eigenstudium: 6 SWS

Studien- und Prüfungsleistung
Schriftliche Prüfung: 90 Min

Inhalte
- Grundlagen der Logik: Mengenlehre, Aussagenlogik und Beweismethoden
- Algebraische Strukturen: Relationen, Gruppen, Ringe, Körper
- Lineare Gleichungssysteme: homogen, inhomogen; Gaußsches Eliminationsverfahren
- Vektoren und Matrizen: Linearkombinationen, lineare Unabhängigkeit
- Vektorräume: Unterräume, Basis und Dimension, Norm und Skalarprodukt
- Lineare Abbildungen: Bild, Kern, Komposition; orthogonale Abbildungen
- Quadratische Matrizen: Inverse Matrix, Determinante, Hauptachsentransformation

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Konzepte der Linearen Algebra zu verstehen (3),
- die Zusammenhänge mit anderen Gebieten (z.B. Analysis, Numerische Mathematik, Technik und Wirtschaftswissenschaften) zu erkennen (1),
- Methoden der Linearen Algebra anwenden zu können (3).

Stand: 04.04.2024
Ostbayerische Technische Hochschule Regensburg Seite 15
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
 • fachlich zu kommunizieren (2),
 • Probleme analytisch und selbstständig zu bearbeiten (2).

Literatur
 • Dirk Hachenberger: Mathematik für Informatiker, Pearson Studium
 • Rod Haggarty: Diskrete Mathematik für Informatiker, Pearson Studium
 • Peter Hartmann: Mathematik für Informatiker, Vieweg und Teubner
 • David Lay: Linear Algebra and its Applications, Pearson
 • Gerald Teschl, Susanne Teschl: Mathematik für Informatiker, Band 1: Diskrete Mathematik und Lineare Algebra, Springer
 • Edmund Weitz: Konkrete Mathematik (nicht nur) für Informatiker, Springer

Weitere Informationen zur Lehrveranstaltung

Zuordnung zu Ausbildungszielen:
G2: Beherrschung elementarer Methoden der Mathematik und der Informatik zur Analyse und Modellierung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Teilmodul	TM-Kurzbezeichnung
Mathematik 2 (Analysis) | MA2

Verantwortliche/r	Fakultät
Prof. Dr. Martin Pohl | Informatik und Mathematik

Lehrende/r / Dozierende/r	Angebotsfrequenz
Prof. Dr. Hans Kiesl
Prof. Dr. Stefan Körkel
Prof. Dr. Rainer Löschel
Prof. Dr. Martin Pohl
Dr. Gabriela Tapken (LBA)
Prof. Dr. Martin Weiß
Prof. Dr. Peter Wirtz

Lehrform

Seminaristischer Unterricht mit integrierten Übungen (gesamt: 6 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>120h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Schriftliche Prüfung: 90 Min

Inhalte

- Folgen und Reihen (u.a. Konvergenzbegriffe - Konvergenzkriterien für Folgen und Reihen - Funktionenreihen)
- Stetigkeit (u.a. Stetigkeitsbegriffe - Zwischenwertsatz)
- Differentialrechnung (u.a. Differentiationsregeln - Mittelwertsatz der Differentialrechnung - Extremwerte)
- Integralrechnung (u.a. Riemannches Integral - Mittelwertsatz der Integralrechnung - Hauptsatz der Differential- und Integralrechnung - Integrationsregeln)
- Mehrdimensionale Analyse (u.a. Funktionen in mehreren Veränderlichen - Grenzwerte und Stetigkeit - Differenzierbarkeit, totale und partielle Ableitung - Extremwerte)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- das Verhalten einer gegebenen Zahlenfolge zu ermitteln (2).
- Zahlenreihen auf die Anwendbarkeit der verschiedenen Konvergenzkriterien zu untersuchen (3) und das Konvergenzverhalten zu bestimmen (2).
- die Definition elementarer Funktionen mittels Potenzreihen zu erläutern (1).
• das Konzept der Ableitung zu beschreiben (1) und die Bedeutung der Ableitung zu erklären (2).
• die Ableitungen vorgegebener Funktionen zu berechnen (2).
• das Verhalten von Funktionen mit Hilfe der zentralen Sätze der Analysis (z.B. Zwischenwertsatz oder Mittelwertsatz) zu analysieren (3).
• Anwendungsaufgaben zur Differentialrechnung zu lösen (2) und die Lösung auf Plausibilität hin zu untersuchen (3).
• die Definition des Riemann-Integrals zu beschreiben (1) und die Bedeutung des Riemann-Integrals in unterschiedlichen Anwendungsbereichen zu erklären (2).
• die elementaren Integrationsmethoden (z.B. partielle Integration und Integration durch Substitution) durchzuführen (2).
• die Zusammenhänge zwischen Differentialrechnung und Integralrechnung zu erkennen (2).
• Anwendungsaufgaben zur Integralrechnung zu lösen (2) und das Ergebnis auf Plausibilität hin zu untersuchen (3).
• das Konzept der partiellen Differenzierbarkeit zu beschreiben (1).
• die geometrische Bedeutung von Gradienten zu erklären (2) und in Anwendungsaufgaben einzusetzen (2).
• Methoden zur Berechnung lokaler und globaler Extrema zu benennen (1).
• Anwendungsaufgaben zur Extremwertberechnung zu analysieren (3) und zu lösen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• fachliche Inhalte in Lerngruppen zu diskutieren (2).
• die Argumente anderer zu analysieren (3).
• den Lernprozess in Lerngruppen zu bewerten (3).
• verschiedene Lernmethoden zu benennen (1).
• genau zu formulieren, was sie nicht verstanden haben (2).
• neue Inhalte im Selbststudium zu erarbeiten (2).
• den persönlichen Nutzen verschiedener Lernmethoden zu bewerten (3).
• den eigenen Lernfortschritt und Lernbedarf zu analysieren (3).
• ihren Lernprozess (Zeitmanagement) selbständig zu organisieren (2).
• mathematische Zusammenhänge mit eigenen Worten darzustellen (2).
• ihren Wissensstand und Lernbedarf zu erkennen (2).

Lehrmedien

Tafel, Beamer, Einsatz mathematischer Software
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Hachenberger, D.: Mathematik für Informatiker, Pearson Studium</td>
</tr>
<tr>
<td>• Hartmann, P.: Mathematik für Informatiker, Springer Vieweg Verlag (*)</td>
</tr>
<tr>
<td>• Heuser, H: Lehrbuch der Analysis (2 Bände), Vieweg + Teubner Verlag</td>
</tr>
<tr>
<td>• James Stewart, J.: Essential Calculus, Brooks/Cole</td>
</tr>
<tr>
<td>• Teschl, G. und S.: Mathematik für Informatiker, Band 2: Analysis und Statistik, Springer Verlag (*)</td>
</tr>
<tr>
<td>• Thomas, G.B., Weir, M.D., Hass, J.: Basisbuch Analysis, Pearson Studium (**)</td>
</tr>
<tr>
<td>• Weitz, E.: Konkrete Mathematik (nicht nur) für Informatiker, Springer Verlag (*)</td>
</tr>
</tbody>
</table>

Für die mit (*) gekennzeichneten Bücher ist der Zugriff auf die pdf-Version über die Hochschulbibliothek der OTH Regensburg möglich.
Für das mit (**) gekennzeichnete Buch ist ein online-Zugriff für drei Nutzer gleichzeitig über die Hochschulbibliothek der OTH Regensburg möglich.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Medizinische Informationssysteme (Medical Information Systems)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medizinische Informationssysteme (Medical Information Systems)</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Athanassios Tsakpinis</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
keine

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Medizinische Informationssysteme</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 04.04.2024
Teilmodul

Medizinische Informationssysteme

TM-Kurzbezeichnung

MIS

Verantwortliche/r

Prof. Dr. Athanassios Tsakpinis

Fakultät

Informatik und Mathematik

Lehrende/r / Dozierende/r

Dr. Michael Reng (LB)

Jürgen Schedlbauer (LB)

Prof. Dr. Athanassios Tsakpinis

Verantwortliche/r

Fakultät

Prof. Dr. Athanassios Tsakpinis

Informatik und Mathematik

Lehrende/r / Dozierende/r

Dr. Michael Reng (LB)

Jürgen Schedlbauer (LB)

Prof. Dr. Athanassios Tsakpinis

Lehrform

Seminaristischer Unterricht mit Übungen (4 SWS)

Studiensemester
gemäß Studienplan

Lehrumfang

[SWS oder UE]

Lehrsprache

deutsch

Arbeitsaufwand

[ECTS-Credits]

1. 4 SWS
deutsh

5

Zeitaufwand:

Präsenzstudium

60h

Eigenstudium

90h

Inhalte

- Aufbau und Organisationsstruktur von Krankenhäusern, Integrierte Versorgungskonzepte im Gesundheitswesen und die sich daraus ergebenden Anforderungen an die IT-Infrastruktur und Informationssysteme
- Krankenhausinformationssysteme: Modellierung von Krankenhausinformationssystemen, Referenzmodelle
- Struktur und Komponenten von Krankenhausinformationssystemen
- Kommunikationsstandards in der Medizinischen Informatik
- Konzepte zur Administration von Krankenhausinformationssystemen.
- Praxisinformationssysteme
- Medizinische Wissensrecherche
- Strukturierte Wissenserfassung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Akteure, die Struktur und den Informationsbedarf im Gesundheitswesen einzuschätzen (2)
- die notwendige IT-Infrastruktur und die wichtigsten Komponenten von Informationssystemen im Gesundheitswesen zu benennen (1)
- die eingesetzte Technologie in der Implementierung von klinischen Informationssystemen zu beurteilen (3)
• medizinische Recherchesysteme zu nutzen (2)
• medizinische Dokumentation und Informationsbedürfnisse aufeinander abzustimmen (2)
• Filter zu setzen, um einen optimalen Wissens- und Informationsfluss zu erhalten (2)
• anstehende IT-Herausforderungen vor dem Hintergrund der aktuellen Entwicklungen im Gesundheitswesen zu beurteilen (3)
• Methoden zur Auswahl und Betreuung von Informationssystemen im Gesundheitswesen einzusetzen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, eigenständig nach Problemlösungen im Gesundheitswesen zu suchen. Sie verfügen über die erforderliche Methoden- und Werkzeugkompetenz, um zielorientiert Lösungen zu implementieren.

Niveaustufe 2: Die Teilnehmer sind in der Lage, die erlernten Hilfsmittel einzusetzen, um Entscheidungen über benötigte Funktionen, Technologien und Produkte zu treffen. Dabei müssen Prozesse ermittelt und beschrieben werden, Informationssysteme analysiert werden und ihre Eignung bewertet werden.

Literatur

• Folienkopien / Skript
• P. Haas: Gesundheitstelematik - Grundlagen, Anwendungen, Potenziale - Berlin: Springer 2006
• Thomas M. Lehmann: Handbuch der medizinischen Informatik ,Hanser Fachbuchverlag, 2004
• P. Haas: Medizinische Informationssysteme und elektronische Krankenakten, Springer, 2004
• Britta Herbig, André Büssing (Herausgeber): Informations- und Kommunikationstechnologien im Krankenhaus: Grundlagen, Umsetzung, Chancen und Risiken, Schattauer Verlag

Weitere Informationen zur Lehrveranstaltung

Vorlesung und Übungen zusammen 4 SWS
Zuordnung zu Ausbildungszielen
• G2: Kenntnis des Aufbaus, sowie der Möglichkeiten und Grenzen von Systemen der Informationstechnik
• G6: Verständnis des deutschen Gesundheitssystems und der zentralen Abläufe in Organisationen des Gesundheitswesens sowie der betriebswirtschaftlichen Zusammenhänge

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmieren (Programming)</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christoph Palm</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Prof. Dr. Kai Selgrad</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. / 2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>16</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Besuch der Vorkurse Mathematik und Programmieren

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Programmieren 1</td>
<td>6 SWS</td>
<td>8</td>
</tr>
<tr>
<td>2.</td>
<td>Programmieren 2 (C++)</td>
<td>6 SWS</td>
<td>8</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programmieren 1</td>
<td>PG1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christoph Palm</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Michael Bulenda</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Prof. Dr. Jan Dünnweber</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Brijnesh Jain</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Daniel Jobst</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Carsten Kern</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Alexander Metzner</td>
<td></td>
</tr>
<tr>
<td>Beate Mielke (LBA)</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Christoph Palm</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Thomas Wölfl</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht (4 SWS) mit Übungen (2 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>90h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: 90 Min</td>
</tr>
</tbody>
</table>
Inhalte

- Kodieren, compilieren, linken und debuggen (mit und ohne IDE) Programmstruktur / Module
- Anweisungen, Ausdrücke
- Datentypen, Variablen, Konstanten und ihre Sichtbarkeit
- Ein-/Ausgabe
- Operatoren (u.a. arithmetisch, relational, logisch, Bitoperatoren)
- Präprozessor
- Kontrollstrukturen
- Arrays
- Zeichenketten
- Funktionen (u.a. main mit/ohne Argumenten) call by value, call by reference
- Rekursionen
- Variablengqualifizierer (const, extern, static, volatile)
- Zeiger (u.a. Zeiger auf Zeiger und Funktionen, Zeigerarithmetik)
- Selbst definierte Datentypen (u.a. enum, struct, union, typedef)
- dynamische Speicherverwaltung
- Verkettete Listen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- ... Konzepte prozeduraler Programmiersprachen zu verstehen (1)
- ... Syntax der Programmiersprache C zu verstehen und anzuwenden (3)
- ... sich die Funktionsweise von bis dahin unbekannten prozeduralen Programmen aus dem Quelltext zu erschließen und Fehler zu identifizieren (2)
- ... einfache Probleme zu analysieren und Algorithmen zur Lösung in der prozeduralen Programmiersprache C zu implementieren und zu testen (3)
- ... elementare Datenstrukturen zu kennen und selbstständig anzuwenden (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- ... fachliche Fragen an die Dozentin bzw. den Dozenten zu stellen und Inhalte der Vorlesung in korrekter Fachsprache wiederzugeben (2)
- ... zu Übungsaufgaben eigene Lösungsstrategien zu erarbeiten (3)
- ... beharrlich an einer Aufgabe zu arbeiten (2)
- ... sorgfältig und exakt zu arbeiten (2)

Angebotene Lehrunterlagen

Folien zur Beamerpräsentation, Beispielprogramme, Übungsblätter

Lehrmedien

Tafel, Notebook, Beamer

Literatur

Weitere Informationen zur Lehrveranstaltung

Zuordnung zu Ausbildungszielen:
G2: Beherrschung elementarer Methoden der Mathematik und der Informatik zur Analyse und Modellierung
G3: Fähigkeit zur ingenieurmäßigen Planung und Erstellung von Software-Systemen, sowohl in fachlicher, als auch in planerischer und organisatorischer Hinsicht

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Programmieren (Programming)

Teilmodul

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>Teilmodul</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG2</td>
<td>Programmieren 2 (C++)</td>
</tr>
</tbody>
</table>

Verantwortliche/r
- Prof. Dr. Kai Selgrad

Fakultät
- Informatik und Mathematik

Lehrende/r / Dozierende/r
- Prof. Dr. Michael Bulenda
- Prof. Dr. Axel Doering
- Prof. Dr. Jan Dünnweber
- Prof. Dr. Daniel Jobst
- Prof. Dr. Carsten Kern
- Prof. Dr. Alexander Metzner
- Prof. Dr. Christoph Palm
- Prof. Dr. Kai Selgrad
- Prof. Dr. Thomas Wölfl

Lehrform
- Seminaristischer Unterricht mit Übungen (6 SWS)

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium: 90h
- Eigenstudium: 150h

Studien- und Prüfungsleistung
- Schriftliche Prüfung: 90 Min

Inhalte

- C++
 - Klassen, Objekte, Klassenhierarchien (Einfach- und Mehrfachvererbung)
 - Lebenszyklus von Objekten
 - Templates, abstrakte Klassen
 - Polymorphie
 - (Operator) Überladung
 - Werte- und Referenzsemantik
 - Ausnahmebehandlung
 - STL
 - GUI-Programmierung (z.B. mit Qt)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, ... die grundlegenden Konzepte objektorientierter Programmiersprachen zu verstehen (1) und diese zur praktischen Problemlösung einzusetzen (2)
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)
Modulname: Programmieren (Programming)

... Problemstellungen zu erfassen (2) und eine algorithmische Lösung dafür (auch unter Verwendung von Standardbibliotheken) in einer vorgegebenen Programmiersprache zu erstellen (am Beispiel von objektorientiertem C++/STL) (2).
... sich in vorhandene (objektorientierte) Bibliotheken einzuarbeiten (1), unbekannten Programmcode auf seine Funktionsweise hin zu analysieren (3) und in eigene Lösungen komplexer Problemstellungen einbinden (3) zu können.
... eigene Lösungsansätze zu kommentieren und zu testen, sowie auch fremden Code zu untersuchen und ggf. zu korrigieren (2).
... die Werkzeuge des Entwicklungsprozesses (Präprozessor, Compiler, Linker) gezielt anzuwenden (3).
... einfache grafische Benutzeroberflächen umzusetzen und mit Programmcode zu verknüpfen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, fachliche Fragen an den Dozenten zu stellen und Inhalte der Vorlesung in korrekter Fachsprache wiederzugeben. (2)
... sich zu Übungsaufgaben eigene Lösungsstrategien zu erarbeiten. (3)
... erlernte Lösungsansätze auf Basis vorgegebener Übungs- und Beispielaufgaben mit Hilfe der eigenen Kreativität und Vorstellungskraft auch auf andere Szenarien des eigenen Erfahrungsbereichs anzuwenden. (3)
... eigene Defizite im Lernfortschritt zu erkennen, dies zu kommunizieren und die Möglichkeiten der angebotenen Hilfestellungen zu nutzen. (2)

Angebotene Lehrunterlagen
Folien zur Beamerpräsentation, Übungsblätter

Lehrmedien
Beamer, Tafel

Literatur
- Stroustrup: Einführung in die Programmierung mit C++, Pearson Studium, 2010 (aktuellere, nur auf Englisch verfügbare Edition ist zu bevorzugen, s.o.)
- Josuttis: Standard Bibliothek
- Breymann: Der C++ Programmierer, Hanser, 2015
- Lippmann, Lajoie, Moo: C++ Primer, Addison-Wesley, 2012

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 04.04.2024
Ostbayerische Technische Hochschule Regensburg
Seite 28
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Grundlagen der Informatik (Technology in Informatics)</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Axel Doering</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.</td>
<td>Pflicht</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Vorkurs-Mathematik

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Folgeseite</td>
</tr>
</tbody>
</table>

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Technische Grundlagen der Informatik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>Modulname: Technische Grundlagen der Informatik (Technology in Informatics)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Modulname: Technische Grundlagen der Informatik (Technology in Informatics)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung: TGI</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Axel Doering Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Axel Doering</td>
</tr>
<tr>
<td>Prof. Dr. Sebastian Fischer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen (gesamt 4 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stunde 1.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 ECTS-Credits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: 90 Min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Umsetzung von Schaltfunktionen und Schaltwerken (Gatter, Speicherelemente)</td>
</tr>
<tr>
<td>Zahlendarstellung (vorzeichenlose und vorzeichen-behaftete Ganzzahlen, Gleitkommazahlen)</td>
</tr>
<tr>
<td>Prozessor von außen: Instruktionssatz-Architekturen, Ablauf der Programmübersetzung</td>
</tr>
<tr>
<td>Prozessor von innen: Datenpfad, Kontrollpfad, Architekturkonzepte</td>
</tr>
<tr>
<td>Speicherhierarchie: Hauptspeicher, Cache, Virtueller Speicher, externer Speicher</td>
</tr>
<tr>
<td>besondere Anforderungen an IT im Medizinumfeld: elektrische Sicherheit, Zuverlässigkeit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
</table>

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- den Grundaufbau von Rechnersystemen (Daten- und Kontrollfluss, Instruktionsarchitekturen) wiederzugeben (1),
- die Funktionsprinzipien wichtiger Komponenten von Rechnersystemen zu erklären (2),
- die Leistungsfähigkeit von Rechnersystemen abzuschätzen und zu bewerten und deren Schwachstellen zu erkennen (3) sowie
- Zusammenhänge zwischen Rechnerarchitekturen (Hardware) und der Programmentwicklung (Software) zu analysieren (3).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, in einem interdisziplinären Team zu kommunizieren und einfache Programmieraufgaben unter Berücksichtigung der hardwaretechnischen Voraussetzungen effizient zu lösen (3).

Lehrmedien

- Tafelvortrag (Powerpoint)
- Rechenübungen
- Computerpraktika

Literatur

- Bryant, O'Hallaron: Computer Systems: A Programmer’s Perspective. 2nd ed., Addison-Wesley, Boston 2011

Weitere Informationen zur Lehrveranstaltung

Vorlesung (2 SWS) und Übungen/Praktika (2 SWS)

Zuordnung zu Ausbildungszielen:

- G1: Kenntnis des Aufbaus, sowie der Möglichkeiten und Grenzen von Systemen der Informationstechnik
- G3: Fähigkeit zur ingenieurmäßigen Planung und Erstellung von Software-Systemen, sowohl in fachlicher, als auch in planerischer und organisatorischer Hinsicht

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Theoretische Informatik (Theoretical Computer Science)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretische Informatik (Theoretical Computer Science)</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Mauerer</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan | Studienabschnitt | Modultyp | Arbeitsaufwand [ECTS-Credits] |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>1.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
keine

Empfohlene Vorkenntnisse
Besuch der Vor- und Brückenkurse

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Theoretische Informatik</td>
<td>6 SWS</td>
<td>8</td>
</tr>
</tbody>
</table>

Stand: 04.04.2024
Ostbayerische Technische Hochschule Regensburg Seite 32
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Theoretische Informatik (Theoretical Computer Science)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theoretische Informatik</td>
<td>TI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Wolfgang Mauerer</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Wolfgang Mauerer</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Klaus Volbert</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen (6 SWS)</td>
</tr>
<tr>
<td>Die Lehrveranstaltung kann auch als virtuelle Lehrveranstaltung mit Präsenzübungen angeboten werden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>90h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: 90 Min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formale Sprachen und Automatentheorie</td>
</tr>
<tr>
<td>Alphabete, Wörter, Sprachen. Informationsgehalt von Wörtern, Sprachen zur Problembeschreibung (speziell: Entscheidungsprobleme)</td>
</tr>
<tr>
<td>Deterministische und nichtdeterministische Endliche Automaten und deren Äquivalenz, Minimierung von Automaten, Grenzen von endlichen Automaten</td>
</tr>
<tr>
<td>Abschlusseigenschaften regulärer Sprachen</td>
</tr>
<tr>
<td>Grammatiken und Chomsky Hierarchie</td>
</tr>
<tr>
<td>Berechenbarkeitstheorie</td>
</tr>
<tr>
<td>Mächtigkeit und Abzählbarkeit</td>
</tr>
<tr>
<td>Turing Maschinen und äquivalente Varianten (z.B. Mehrband-Turingmaschine, nichtdeterministische Turingmaschine)</td>
</tr>
<tr>
<td>Kodierung von Turingmaschinen</td>
</tr>
<tr>
<td>Grenzen der Berechenbarkeit: Methode der Diagonalisierung und Methode der Kolmogorov-Komplexität</td>
</tr>
<tr>
<td>Satz von Rice</td>
</tr>
<tr>
<td>Komplexitätstheorie</td>
</tr>
<tr>
<td>Komplexitätsmaße</td>
</tr>
<tr>
<td>Komplexitätsklassen P und NP</td>
</tr>
</tbody>
</table>

Stand: 04.04.2024

Ostbayerische Technische Hochschule Regensburg
Seite 33
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die in der Vorlesung behandelten wissenschaftlichen Inhalte zu verstehen und anzuwenden (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die in der Vorlesung behandelten wissenschaftlichen Inhalte selbständig zu verstehen und anzuwenden (3)

Lehrmedien

Tafel, Folien

Literatur

- Dirk W. Hoffmann: Theoretische Informatik, Hanser Verlag, 2009
- Uwe Schöning: Theoretische Informatik – kurzgefaßt, Spektrum Akademischer Verlag, 1995
- Ingo Wegener: Theoretische Informatik, Teubner, 2005

Weitere Informationen zur Lehrveranstaltung

Vorlesung und Übungen zusammen 6 SWS

Zuordnung zu Ausbildungszielen:
- G1: Kenntnis des Aufbaus, sowie der Möglichkeiten und Grenzen von Systemen der Informationstechnik.
- G2: Beherrschung elementarer Methoden der Mathematik und der Informatik zur Analyse und Modellierung
- G3: Fähigkeit zur ingenieurmäßigen Planung und Erstellung von Software-Systemen, sowohl in fachlicher, als auch in planerischer und organisatorischer Hinsicht.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulname: Algorithmen und Datenstrukturen (Algorithms and Data Structures)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithmen und Datenstrukturen</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Klaus Volbert</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>2.</td>
<td>Pflicht</td>
<td>8</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse

Programmieren 1 und 2

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Algorithmen und Datenstrukturen</td>
<td>6 SWS</td>
<td>8</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
--- | ---
Algorithmen und Datenstrukturen | AD

Verantwortliche/r	Fakultät
Prof. Dr. Klaus Volbert | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
--- | ---
Prof. Dr. Carsten Kern
Prof. Dr. Christoph Palm
Prof. Dr. Klaus Volbert

Lehrform
Seminaristischer Unterricht mit Übungen (6 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrmfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>[SWS oder UE] 6 SWS</td>
<td>deutsch</td>
<td>[ECTS-Credits] 8</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>150h</td>
</tr>
</tbody>
</table>

Schriftliche Prüfung: 90 Min

Inhalte

- Komplexitätsanalyse (Modelle zur Laufzeit- und Speicherplatzanalyse, Best-, Average- und Worst-Case-Analyse, Komplexitätsklassen, Asymptotische Komplexität)
- Entwurfsmethoden (Divide and Conquer, Dynamische Programmierung, Greedy-Algorithmen, Backtracking)
- Algorithmen für Standard-Probleme:
 - Elementare, fortgeschrittene und schlüsselbasierte Sortierverfahren,
 - Datenstrukturen zur Verwaltung von Mengen (z.B. binäre Suchbäume, balancierte Bäume, Queues),
 - Suchen in Mengen und Zeichenketten,
 - einfache Graph-Algorithmen (z.B. Tiefen- und Breitensuche, kürzeste Pfade, minimale Spannbäume)

Lernziele: Fachkompetenz

Name des Studiengangs:
Bachelor Medizinische Informatik (PO: 20172)

Modulname:
Algorithmen und Datenstrukturen (Algorithms and Data Structures)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, algorithmische Problemstellungen zu grundlegenden Themen in der Informatik selbstständig alleine und in Gruppenarbeit wiederzugeben (1), zu bearbeiten (2) und zu lösen (3). Sie können eigene und andere Lösungen bewerten und vergleichen.

Lehrmedien

Tafel, Notebook, Beamer

Literatur

- Schöning, U.: Algorithmik, Spektrum Akademischer Verlag, 2011

Weitere Informationen zur Lehrveranstaltung

Vorlesung und Übungen zusammen 6 SWS

Zuordnung zu Ausbildungszielen:

- G1: Kenntnis des Aufbaus, sowie der Möglichkeiten und Grenzen von Systemen der Informationstechnik.
- G2: Beherrschung elementarer Methoden der Mathematik und der Informatik zur Analyse und Modellierung.
- G3: Fähigkeit zur ingenieurmäßigen Planung und Erstellung von Software-Systemen, sowohl in fachlicher, als auch in planerischer und organisatorischer Hinsicht.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 04.04.2024
Ostbayerische Technische Hochschule Regensburg
Seite 37
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Allgemeinwissenschaftliches Wahlpflichtmodul 2 (Mandatory General Studies: Elective Module 2) | 19

Modulverantwortliche/r	Fakultät
Prof. Dr. Gabriele Blod | Angewandte Natur- und Kulturwissenschaften

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4. / 5.</td>
<td>2.</td>
<td>Wahlpflicht</td>
<td>2</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
in der Regel keine, außer bei aufeinander aufbauenden Kursen

Inhalte
- Vermittlung von Orientierungswissen und Allgemeinbildung
- Vermittlung und Training von Schlüsselkompetenzen (z.B. Zusatzzertifikat "Soft Skills")
- Vermittlung und Training von (Fremd-)Sprachen

Lernziele: Fachkompetenz
Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen Fachkompetenzen zu verstehen und anzuwenden.

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Moduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen persönlichen Kompetenzen intellektuell einzuordnen und praktisch umzusetzen.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Lehrveranstaltungen nach Angaben des aktuellen AW-Kataloges</td>
<td>2 SWS</td>
<td>2</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen nach Angaben des aktuellen AW-Kataloges</td>
<td>AW2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Gabriele Blod</td>
<td>Angewandte Natur- und Kulturwissenschaften</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>N.N.</td>
<td></td>
</tr>
</tbody>
</table>

| Lehrform | Abhängig von der ausgewählten Lehrveranstaltung |

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4. / 5.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
<td>Eigenstudium</td>
</tr>
<tr>
<td>30h</td>
<td>30h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur oder Studienarbeit oder mündlicher Leistungsnachweis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhängig von der ausgewählten Lehrveranstaltung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen Fachkompetenzen zu verstehen und anzuwenden.</td>
<td></td>
</tr>
</tbody>
</table>

Lernziele: Persönliche Kompetenz	

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die in der jeweiligen Kursbeschreibung beschriebenen persönlichen Kompetenzen intellektuell einzuordnen und praktisch umzusetzen.	

<table>
<thead>
<tr>
<th>Literatur</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Abhängig von der ausgewählten Lehrveranstaltung</td>
<td></td>
</tr>
</tbody>
</table>
Weitere Informationen zur Lehrveranstaltung

Zuordnung zu Ausbildungszieilen:
- G7: Verantwortungsbewusstes Arbeiten in Teams
- G8: Fähigkeit zum selbstständigen Einarbeiten in Spezialgebiete

Hinweis:
Wir wollen Studierende an dieser Stelle ermutigen, eventuell zusätzliche Fächer aus dem AW-Bereich zu belegen. Diese können dann als Wahlfächer in das Abschlusszeugnis aufgenommen werden.

Wahlmöglichkeiten:
AW-Modul 2: frei wählbar aus dem gesamten AW-Angebot mit folgenden Ausnahmen:
- Module aus dem Bereich EDV
- Module der VHB des Themenbereichs Internetkompetenz oder anderer Informatikbezogener Themen
- Modul „3-D-Druck“ aus dem Bereich Naturwissenschaft und Technik
- Modul „Lernen und Studieren 1 + 2“ aus dem Bereich Sozial- und Methodenkompetenz Block 5
- Modul „Einführung in Künstliche Intelligenz und Maschinelles Lernen“ aus dem Bereich Sozial- und Methodenkompetenz: Block 5

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebssysteme (Operating Systems)</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Markus Kucera</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand (ECTS-Credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
Programmieren 1 und 2

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand (ECTS-Credits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Betriebssysteme</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>Teilmodul</td>
<td>TM-Kurzbezeichnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebssysteme</td>
<td>OS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Markus Kucera</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Jan Dünnweber</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Markus Kucera</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Georgios Raptis</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen (4 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>[ECTS-Credits]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Schriftliche Prüfung: 90 Min

Inhalte
- Einführung (Historie, Betriebssystem, Schichtenmodell, Schnittstellen und virtuelle Maschine)
- Prozesse (Prozesszustände, Scheduling, Synchronisation, Kommunikation)
- Speicherverwaltung (Speicherbelegungsstrategien, virtueller Speicher, Seitenverwaltung, Segmentierung, Cache)
- Dateiverwaltung (Dateisysteme, Dateiattribute, Dateifunktionen, Dateiorganisation)
- Einführung in Unix
- Systemaufrufe, Shells und Utilities

Lernziele: Fachkompetenz

Die Studierenden kennen die grundlegenden Konzepte eines modernen Betriebssystems und erwerben Fertigkeiten in der systemnahen Programmierung.

Stand: 04.04.2024
Ostbayerische Technische Hochschule Regensburg
Seite 42
Die Studierenden erwerben Kenntnisse über das Zusammenspiel von Hardware und Software, sowie die effiziente Ressourcenverwaltung.

Die Kompetenzen werden auf Niveaustufe 3 vermittelt.

Lernziele: Persönliche Kompetenz

Studierende entwickeln ein berufliches Selbstbild, das sich an Zielen und Standards professionellen Handelns in vorwiegend außerhalb der Wissenschaft liegenden Berufsfeldern orientiert. Sie begründen das eigene berufliche Handeln mit theoretischem und methodischem Wissen und können die eigenen Fähigkeiten einschätzen, sie reflektieren autonom sachbezogene Gestaltungs- und Entscheidungsfragen und nutzen diese unter Anleitung. Studierende erkennen situationsadäquat Rahmenbedingungen beruflichen Handelns und begründen ihre Entscheidungen verantwortungsethisch. Sie reflektieren ihr berufliches Handeln kritisch in Bezug auf gesellschaftliche Erwartungen und Folgen.

Die Kompetenzen werden auf Niveaustufe 3 vermittelt.

Literatur

- A. S. Tanenbaum: Moderne Betriebssysteme, Pearson Studium

Weitere Informationen zur Lehrveranstaltung

Vorlesung und Übungen zusammen 4 SWS
Zuordnung zu Ausbildungszieilen
- G1: Kenntnis des Aufbaus, sowie der Möglichkeiten und Grenzen von Systemen der Informationstechnik
- G2: Beherrschung elementarer Methoden der Mathematik und der Informatik zur Analyse und Modellierung
- G3: Fähigkeit zur ingenieurmäßigen Planung und Erstellung von Software-Systemen, sowohl in fachlicher, als auch in planerischer und organisatorischer Hinsicht

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Biometrie (Biometrics)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biometrie (Biometrics)</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Wirtz</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
Mathematik 1 und 2

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Biometrie</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs:
Bachelor Medizinische Informatik (PO: 20172)

Modulname:
Biometrie (Biometrics)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biometrie</td>
<td>BIO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Wirtz</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Peter Wirtz</td>
<td>jedes 2.Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen (4 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stunde</td>
<td>SWS oder UE</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4.</td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

| Schriftliche Prüfung: 90 Min |

Inhalte

1) Grundbegriffe der Wahrscheinlichkeitstheorie
(Wahrscheinlichkeitsräume, bedingte Wahrscheinlichkeiten, stochastische Unabhängigkeit, diskrete und stetige Zufallsvariablen, zweidimensionale Zufallsvariablen);
2) Deskriptive Statistik (Merkmale, Skalenniveau von Daten, Darstellung von Messreihen, Maßzahlen für ein- und zweidimensionale Messreihen, lineare Regression, Korrelation);
3) Schließende Statistik (Prinzip des Statistischen Testens);
4) Anwendungen der Statistik in der Medizin.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- grundlegende Definitionen, Begriffe und Sätze der elementaren Wahrscheinlichkeitstheorie mit eigenen Worten zu erläutern (1),
- wahrscheinlichkeitstheoretische Fragestellungen selbstständig und planvoll zu bearbeiten (2),
- grundlegende Verfahren der deskriptiven Statistik anzuwenden (2),
- die Methodik statistischer Schätz- und Testverfahren beurteilen und für praktische Fragestellungen anwenden zu können (3),
- einfache stochastische Anwendungen in der Medizin selbstständig und selbstsicher anzugehen (3),
- zusätzlich statistische Fachliteratur zu verstehen und einzuordnen (2),
- einfache sowie anspruchsvollere statistische Analysen für eigene Arbeiten (Seminar, Abschlussarbeiten, Forschungsprojekte) durchzuführen (3).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- zielorientiert im Team zu arbeiten (Teamfähigkeit) (1),
- die erarbeiteten Ergebnisse sach- und zielgerecht vorzutragen (Präsentationskompetenz) (2),
- ihren Standpunkt fachlich zu verteidigen (Argumentationskompetenz) (3),
- erarbeitete Ergebnisse zielgruppenorientiert vorzustellen (Anpassungsfähigkeit) (1),
- eigene Ergebnisse und Meinungen vor verschiedenen Zielgruppen zu verteidigen (Vertrauen in das eigene Urteilsvermögen (2),
- anspruchvolle Fragestellungen zu bewerten und zielorientiert zu bearbeiten (3).

Literatur

- Altman, D. G.: Practical Statistics for Medical Research, Chapman & Hall
- Harms, V.: Biomathematik, Statistik und Dokumentation, Harms Verlag
- Pocock, S. J.: Clinical Trials A Practical Approach, John Wiley & Sons
- Precht, M. und Kraft, R.: Biostatistik 1, Oldenbourg Verlag
- Precht, M. und Kraft, R.: Biostatistik 2, Oldenbourg Verlag
- Schumacher, M. et al: Methodik klinischer Studien, Springer Verlag
- Trampisch, H. J. und Windeler, J.: Medizinische Statistik, Springer Verlag

Weitere Informationen zur Lehrveranstaltung

Vorlesung und Übungen zusammen 4 SWS

Zuordnung zu Ausbildungszielen:
- G2: Beherrschung elementarer Methoden der Mathematik und der Informatik zur Analyse und Modellierung

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datenbanken (Databases)</td>
<td>9</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Johannes Schildgen</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

- Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt
- Empfohlene Vorkenntnisse
 - Gute Programmierkenntnisse in C und C++ oder Java; Theoretische Informatik

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Datenbanken</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>

Stand: 04.04.2024

Ostbayerische Technische Hochschule Regensburg

Seite 47

Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Datenbanken (Databases)

Teilmodul	TM-Kurzbezeichnung
Datenbanken | DB

Verantwortliche/r	Fakultät
Prof. Dr. Johannes Schildgen | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
--- | ---
Stephan Payer (LB) | Prof. Dr. Johannes Schildgen
Lehrform
Seminaristischer Unterricht mit Übungen (6 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium	Eigenstudium
90h | 120h |

Studien- und Prüfungsleistung
Schriftliche Prüfung: 90 Min

Inhalte
- SQL: Datenbankzugriffssprache DML, Datenbankbeschreibungssprache DDL, Sichten, Schemata, Besonderheiten in speziellen Datenbanken.
- Datenbankprogrammierung: Transaktionen, Zugriff auf Datenbanken mit geeigneten Programmiersprachen, Fehlerbehandlung.
- Datenbankoptimierung: Optimierung der Zugriffe, Indizes
- Ausgewählte aktuelle Entwicklungen, etwa zu XML, NoSQL, Datenbanken in der Cloud

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- den Aufbau und die Funktionsweise von Datenbanken wiederzugeben (1),
- selbstständig kleinere bis mittlere Datenbanken konzeptionell und logisch zu entwerfen (2),
- Datenbanken mittels der Anfragesprache SQL einzurichten (2) und zu verwenden. (2),
- Konzepte wie Sichten, Trigger und benutzerdefinierte Funktionen zu bewerten (3) und adäquate Konzepte für spezielle Anwendungsfälle auszuwählen (3).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• in Zusammenarbeit mit anderen Datenbanken zu modellieren und Modellierungsalternativen zu diskutieren (3),
• selbstständig die Anfragesprache SQL auf einer Datenbank einzusetzen (2).

Lehrmedien
Tafel, Beamer, Notebook

Literatur
• E. Schicker: Datenbanken und SQL, Springer-Vieweg 2014
• A. Kemper / A. Eickler: Datenbanksysteme: Eine Einführung, Oldenbourg, 2015
• C.J. Date: Introduction to Database Systems, Addison Wesley, 2003
• C.J. Date / H. Darwen: SQL – Der Standard, Addison Wesley, 1998

Weitere Informationen zur Lehrveranstaltung
Zuordnung zu Ausbildungszielen:
G1: Kenntnis des Aufbaus, sowie der Möglichkeiten und Grenzen von Systemen der Informationstechnik
G2: Beherrschung elementarer Methoden der Mathematik und der Informatik zur Analyse und Modellierung
G3: Fähigkeit zur ingenieurmäßiglen Planung und Erstellung von Software-Systemen, sowohl in fachlicher, als auch in planerischer und organisatorischer Hinsicht

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kommunikationssysteme (Networking)</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Waas</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>2.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
Programmieren 1 und 2
Technische Grundlagen der Informatik

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kommunikationssysteme-IM</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)
Modulname: Kommunikationssysteme (Networking)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kommunikationssysteme-IM</td>
<td>KS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Thomas Waas</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Rudolf Hackenberg</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Georgios Raptis</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Thomas Waas</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehreform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit Übungen (4 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60h</td>
</tr>
<tr>
<td>Eigenstudium</td>
</tr>
<tr>
<td>90h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: 90 Min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Überblick über Computernetzwerke (Komponenten, Operation, Protokolle, zeitlicher Ablauf der Datenübertragung, Netzwerk- Architektur Modelle: ISO - OSI, TCP/IP)</td>
</tr>
<tr>
<td>• Anwendungs-Schicht (Kommunikation zw. Prozessen, Dienste für NW-Anwendungen, Protokollablauf und Meldungsformate der Anwendungen: HTTP, FTP, E-Mail, DNS)</td>
</tr>
<tr>
<td>• Transport Schicht (Protokollarten: TCP, UDP, Meldungsformate, Ablauf, Überlastkontrolle, Analyse)</td>
</tr>
<tr>
<td>• Einführung in die Kommunikationssicherheit: TLS, Firewalls, Virtuelle Private Netzwerke</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele: Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• Netzwerk-Komponenten, deren Rolle und die Kommunikations-Protokolle zwischen Komponenten anzugeben (1),</td>
</tr>
</tbody>
</table>

Stand: 04.04.2024
Ostbayerische Technische Hochschule Regensburg
• das Standard ISO-OSI Architektur-Modell im Vergleich zum TCP/IP-Modell zu benennen (1), sowie verschiedene Netzwerk-Dienste der Anwendungs-Schicht (wie z. B. DNS, DHCP) zu benutzen (2).
• mittels Analyse-Tools im Labor die Meldungsinhalte zu analysieren (3) und zu identifizieren (1),
• die Protokolle der Transportschicht (TCP, UDP) und die wichtigsten Dienste der Netzwerkschicht, wie Routing und globale Adressierung, zu benennen (1) und können diese praktisch auf die Netzwerk-Komponenten, wie Router und Switch, anwenden (2),
• die meist verwendeten Verfahren für die Meldungsübertragung auf die Data-Link-Ebenen aufzuzählen (1)

Angebotene Lehrunterlagen

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, fachliche Inhalte vor einem Publikum darzustellen (2), fachliche Fragen zu stellen (3) und netzwerktechnische Zusammenhänge in korrekter Fachsprache wiederzugeben (3).

Literatur

• Skript/Foliensatz und On-Line Tutorials
• D.E. Comer: „Computernetzwerke und Internets“ Pearson
• James Kurose & Keith Ross: „Computernetzwerke: Ein Top-Down-Ansatz“ Pearson Deutschland GmbH
• Fred Halsall: Computer Networking and the Internet, Addison Wesley, Reading, MA.
• Behrouz Forouzan: Data Communications and Networking, McGraw Hill, Boston

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)
Modulname: Medizinische Bildverarbeitung (Medical Image Processing)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medizinische Bildverarbeitung (Medical Image Processing)</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christoph Palm</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
Programmieren 1 und 2
Einführung in die Medizin 1 und 2

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Medizinische Bildverarbeitung</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 04.04.2024
Ostbayerische Technische Hochschule Regensburg Seite 53
<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medizinische Bildverarbeitung</td>
<td>MBV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christoph Palm</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Schuster Dietwald</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Christoph Palm</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht (3 SWS) mit Übungen (1 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium | Eigenstudium |
60h | 90h |

Studien- und Prüfungsleistung
Schriftliche Prüfung: 90 Min
Inhalte

<table>
<thead>
<tr>
<th>1. Einführung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>2. Bildgebende Verfahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>Röntgen</td>
</tr>
<tr>
<td>Computertomographie</td>
</tr>
<tr>
<td>Magnet-Resonanz-Tomographie</td>
</tr>
<tr>
<td>Positronen-Emissions-Tomographie</td>
</tr>
<tr>
<td>Sonographie</td>
</tr>
<tr>
<td>Endoskopie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Das digitale Bild</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digitale Bilder</td>
</tr>
<tr>
<td>Diskretisierung</td>
</tr>
<tr>
<td>Bildeigenschaften</td>
</tr>
<tr>
<td>Histogrammmmodifikation</td>
</tr>
<tr>
<td>Histogrammäqualisation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Kantenerkennung und Glättung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kante</td>
</tr>
<tr>
<td>Gradient</td>
</tr>
<tr>
<td>Faltung</td>
</tr>
<tr>
<td>Kantenfilter</td>
</tr>
<tr>
<td>Lineare GlättungsfILTER</td>
</tr>
<tr>
<td>Medianfilter</td>
</tr>
<tr>
<td>Canny-Deriche-Kantendetektion</td>
</tr>
<tr>
<td>Zweite Ableitung</td>
</tr>
<tr>
<td>Unsharp Masking</td>
</tr>
<tr>
<td>Hough-Transformation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Das Bild im Frequenzraum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation der Fouriertransformation</td>
</tr>
<tr>
<td>Basiswechsel</td>
</tr>
<tr>
<td>Komplexe Zahlen und periodische Basisfunktionen</td>
</tr>
<tr>
<td>Diskrete Fouriertransformation (DFT)</td>
</tr>
<tr>
<td>Beispiele der DFT</td>
</tr>
<tr>
<td>Eigenschaften der DFT</td>
</tr>
<tr>
<td>Faltungstheorem</td>
</tr>
<tr>
<td>Filter im Frequenzraum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. Segmentierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung</td>
</tr>
<tr>
<td>Kantenbasierte Segmentierung</td>
</tr>
<tr>
<td>Pixelbasierte Segmentierung</td>
</tr>
<tr>
<td>Otsu - Schwellenwert</td>
</tr>
<tr>
<td>Region Growing</td>
</tr>
<tr>
<td>Wasserscheidentransformation</td>
</tr>
<tr>
<td>Aktive Konturmodelle</td>
</tr>
</tbody>
</table>
- LevelSet-Segmentierung

7. Morphologie
- Grundlegende Operatoren

8. Bildregistrierung
- Einführung
- Registrierungsmodul: Transformation, Resampling, Interpolation, Metrik, Optimierung

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, ... verschiedene Bildmodalitäten gegenüberzustellen und den Nutzen für medizinische Fragestellungen zu erkennen (1) ... mit medizinischen Bildern zu experimentieren (2) und dabei die besonderen Anforderungen beim Umgang mit solchen Daten herauszuarbeiten (2) ... die wichtigsten Methoden der Bildverarbeitung zu verstehen (2) und sie zu implementieren (3) ... geeignete Bildverarbeitungsmethoden, die Reihenfolge ihrer Anwendung zur Lösung einer Fragestellung vorzuschlagen und mit Hilfe von Tools umzusetzen (3). Sie analysieren die Auswirkung von Parametern auf die Ergebnisse und können die Effekte begründen (3). ... den Zusammenhang zwischen Orts- und Frequenzraum aufzuzeigen (1) und Filter im Frequenzraum zu konstruieren (2) ... die Möglichkeiten von medizinischen Bildverarbeitungsmethoden auf realem Bildmaterial zu hinterfragen, die Grenzen zu erkennen und sie zu benennen (2)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, ... fachliche Fragen an den Dozenten zu stellen und Inhalte der Vorlesung in korrekter Fachsprache wiederzugeben (2) ... sich zu Übungsaufgaben eigene Lösungsstrategien zu erarbeiten (3) ... Ergebnisse von Übungsaufgaben vor einem Publikum darzustellen (1)

Angebotene Lehrunterlagen

Lehrvideos, Mitschriften und Folien zu den Lehrvideos, Literaturhinweise

Lehrmedien

Lehrvideos, Mitschriften zu den Lehrvideos, synchrone Präsentation über Conferencing-Tools

Literatur
Weitere Informationen zur Lehrveranstaltung

Zuordnung zu Ausbildungszielen:

- G1: Kenntnis des Aufbaus, sowie der Möglichkeiten und Grenzen von Systemen der Informationstechnik.
- G2: Beherrschung elementarer Methoden der Mathematik und der Informatik zur Analyse und Modellierung.
- G8: Fähigkeit zum selbständigen Einarbeiten in Spezialgebiete.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Medizinische Dokumentation (Medical Documentation)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medizinische Dokumentation (Medical Documentation)</td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael Reng (LB)</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>2.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
- Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
- Einführung in die Medizin 1 und 2

Inhalte
- siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Medizinische Dokumentation 1</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
<tr>
<td>2.</td>
<td>Medizinische Dokumentation 2</td>
<td>2 SWS</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Stand: 04.04.2024
Ostbayerische Technische Hochschule Regensburg
Teilmodul

<table>
<thead>
<tr>
<th>Name des Studiengangs:</th>
<th>Bachelor Medizinische Informatik (PO: 20172)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname:</td>
<td>Medizinische Dokumentation (Medical Documentation)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name des Studiengangs:</th>
<th>Bachelor Medizinische Informatik (PO: 20172)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulname:</td>
<td>Medizinische Dokumentation (Medical Documentation)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>MDO1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael Reng (LB)</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael Reng (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
<th>Seminaristischer Unterricht mit Übungen (2 SWS)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Prüfungspflicht</th>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>45h</td>
<td></td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

<table>
<thead>
<tr>
<th>Studienleistung</th>
<th>Studienarbeit oder Präsentation mit Erfolg</th>
</tr>
</thead>
</table>

Inhalte

- Aufgaben und Ziele der medizinischen Dokumentation
- Medizinische Basisdokumentation (Administrative Dokumentation) an praktischen Bespielen

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Konzepte der integrativen Dokumentation zu erarbeiten (2)
- Werkzeuge zur Codierung von Diagnosen und Prozeduren zu kennen (1) und sinnvoll zu nutzen (2)
- ein kleineres Projekt zur medizinischen Dokumentation in einer Gruppe umzusetzen (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- sich im Team zu organisieren, zu strukturieren und zu kommunizieren (2),
- fachliche Inhalte über das Projekt in schriftlicher Form darzustellen (2)

Literatur

- Folienkopien / Skript
- P. Haas: Medizinische Informationssysteme und elektronische Krankenakten, Springer, 2004

Stand: 04.04.2024

Ostbayerische Technische Hochschule Regensburg
Weitere Informationen zur Lehrveranstaltung

Zuordnung zu Ausbildungszielen.

- G8: Fähigkeit zum selbständigen Einarbeiten in Spezialgebiete.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)
Modulname: Medizinische Dokumentation (Medical Documentation)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medizinische Dokumentation 2</td>
<td>MD02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael Reng (LB)</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Dr. Michael Reng (LB)</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform
Seminaristischer Unterricht mit Übungen (2 SWS)

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>2.5 [ECTS-Credits]</td>
</tr>
<tr>
<td>4.</td>
<td>2 SWS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>45h</td>
</tr>
</tbody>
</table>

| Studien- und Prüfungsleistung |
| Schriftliche Prüfung: 90 Min |

Inhalte
- Klinische Dokumentation an praktischen Beispielen
- Medicolegale Dokumentation an praktischen Beispielen
- Qualitätssichernde Dokumentation an praktischen Beispielen
- Terminologien/Ontologien (ICD-10, OPS, SNOMED-CT, LOINC, UMLS)
- Standards für die Integration von Wissensbasen (Guidelines, Literaturdatenbanken) in klinischer Anwendungsoftware
- IT-Unterstützung bei der Dokumentation medizinischen Handelns

Lernziele: Fachkompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Pflichten und gesetzlichen Vorschriften der medizinischen Dokumentation zu benennen (1),
- die Notwendigkeit und unterschiedliche Bedeutung der medizinischen Dokumentation zu verstehen (2),
- die medizinische Dokumentation im klinischen und administrativen Workflow einzuordnen (2),
- den Einfluss der medizinischen Dokumentation auf die Entgeltstruktur im Gesundheitswesen zu erkennen und kritisch zu hinterfragen (3).

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
sich an fachlichen Diskussionen über die Dokumentationspflichten und die Entgeltstruktur im Gesundheitswesen angemessen zu beteiligen und einen eigenen Standpunkt zu entwickeln (2)
Zusammenhänge in korrekter Fachsprache wiederzugeben (2).

Literatur
- Folienkopien / Skript
- P. Haas: Medizinische Informationssysteme und elektronische Krankenakten, Springer, 2004

Weitere Informationen zur Lehrveranstaltung
Zuordnung zu Ausbildungszielen.
- G8: Fähigkeit zum selbständigen Einarbeiten in Spezialgebiete
Studienarbeit mit Erfolg aus Lehrveranstaltung Medizinische Dokumentation 1

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	**Modul-KzBez. oder Nr.**
Medizinisches Praktikum (Hands-On Medicine) | 17

Modulverantwortliche/r	**Fakultät**
Dr. Michael Reng (LB) | Informatik und Mathematik

Studiensemester gemäß Studienplan	**Studienabschnitt**	**Modultyp**	**Arbeitsaufwand [ECTS-Credits]**
3. / 4. | 2. | Pflicht | 5

Verpflichtende Voraussetzungen
Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
Einführung in die Medizin 1 und 2
Medizinische Informationssysteme

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Medizinisches Praktikum</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 04.04.2024 Ostbayernische Technische Hochschule Regensburg Seite 63
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)
Modulname: Medizinisches Praktikum (Hands-On Medicine)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medizinisches Praktikum</td>
<td>MPX</td>
</tr>
</tbody>
</table>

Verantwortliche/r	Fakultät
Dr. Michael Reng (LB) | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Dr. Michael Reng (LB) |

Lehrform
Praktikum an einer Klinik (2SWS) mit begleitendem Seminar (2SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium: 60h
- Eigenstudium: 90h

Studien- und Prüfungsleistung
Präsentation mit Erfolg

Inhalte
- Einsatz von EDV-Verfahren in der Medizin (klinisch + administrativ)
- Praktische Kenntnisse medizinspezifischer EDV-Applikationen
- Vertiefter Einblick in die Arbeitsweise medizinischer Fachgebiete sowie des medizinischen Arbeitsumfelds (Praktikum)

Lernziele: Fachkompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- bezogen auf medizinische Arbeitsplätze die Einsatzgebiete, Möglichkeiten und Limitationen von EDV-Verfahren aufzuzeigen (2),
- theoretische Ansätze zur Optimierung der vorhandenen EDV-Verfahren in der Medizin zu erarbeiten und kritisch zu diskutieren (3),
- EDV-basierte Verfahren in der Medizin arbeitsplatz- und workflow-bezogen zu analysieren (2).

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fachliche Inhalte darzustellen und vor einem Publikum zu präsentieren (1)
- sich über einen Zeitraum von mehreren Tagen in einer neuen Umgebung wie einer Universitätsklinik zurechtzufinden und sich schnell in ein neues Umfeld zu integrieren (2),
- das eigene Fachgebiet aus einer neuen Sicht, der medizinischen Perspektive, zu betrachten und sich auf diese veränderte Sichtweise einzustellen (2).

Stand: 04.04.2024
Ostbayerische Technische Hochschule Regensburg
Name des Studiengangs:
Bachelor Medizinische Informatik (PO: 20172)

Modulname:
Medizinisches Praktikum (Hands-On Medicine)

Literatur

Weitere Informationen zur Lehrveranstaltung

<table>
<thead>
<tr>
<th>Seminaristischer Unterricht (2 SWS) und Praktikum an einer Klinik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuordnung zu Ausbildungszielen:</td>
</tr>
<tr>
<td>- G3: Fähigkeit zur ingenieurmäßigen Planung und Erstellung von Software-Systemen, sowohl in fachlicher, als auch in planerischer und organisatorischer Hinsicht</td>
</tr>
<tr>
<td>- G7: Verantwortungsbewusstes Arbeiten in Teams</td>
</tr>
<tr>
<td>- G8: Fähigkeit zum selbständigen Einarbeiten in Spezialgebiet</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)
Modulname: Medizinrecht (Regulations and Legal Affairs)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medizinrecht (Regulations and Legal Affairs)</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael Reng (LB)</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. / 4. / 5.</td>
<td>2.</td>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Medizinrecht</td>
<td>2 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>

Stand: 04.04.2024
Ostbayerische Technische Hochschule Regensburg
Seite 66
Teilmodul

<table>
<thead>
<tr>
<th>Modulname:</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medizinrecht</td>
<td>MRE</td>
</tr>
</tbody>
</table>

Verantwortliche/r Fakultät
Dr. Michael Reng (LB) Informatik und Mathematik
Lehrende/r / Dozierende/r Angebotsfrequenz
Dr. Alexander Siebel (LB)

Lehrform
Seminaristischer Unterricht mit Übungen (2 SWS)

Studiensemester gemäß Studienplan	Lehrumfang	Lehrsprache	Arbeitsaufwand [ECTS-Credits]
5. auch 3. oder 4. möglich | 2 SWS | deutsch | 3 |

Zeitaufwand:
<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>60h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung
Klausur: 60 Min

Inhalte

- Grundlagen des Medizinrechtes
- Organisation des Gesundheitswesens
- Ärztliches Berufsrecht
- Behandlungsvertragsrecht
- Aufklärung
- Arztstrafrecht
- Patientenverfügung
- Sterbehilfe
- Arzthaftung
- Schweigepflicht
- Datenschutz
- Medizinische Dokumentation
- Vertragsarztrecht
- Medizinproduktrecht
- Arzneimittelrecht
- Beta#ubungsmittelrecht
- Klinische Zwischenfälle

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- die Relevanz medicolegaler Aspekte im klinischen Bezug zu verstehen (2) und
 einzuordnen (3),
medizin-relevante Implikationen des Datenschutzes (Zugriffs-, Modifikationsschutz, etc) zu nennen (1) und zu erläutern (2).

Konzepte zur Datenprozessierung im Hinblick auf ihre juristische Stichhaltigkeit zu hinterfragen (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- fachliche Fragen zu stellen und Fragen der Dozentinnen und Dozenten angemessen zu beantworten (2).

Literatur

Vorlesungsskript

Weitere Informationen zur Lehrveranstaltung

Vorlesung und Übungen zusammen 2 SWS

Zuordnung zu Ausbildungszielen:
G6: Verständnis des deutschen Gesundheitssystems und der zentralen Abläufe in Organisationen des Gesundheitswesens sowie der betriebswirtschaftlichen Zusammenhänge

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
Name des Studiengangs:
Bachelor Medizinische Informatik (PO: 20172)

Modulname:
Physik (Physics)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physik (Physics)</td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Axel Doering</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>2.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

keine

Empfohlene Vorkenntnisse

keine

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>IM Physik</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Physik (Physics)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM Physik</td>
<td>PH</td>
</tr>
</tbody>
</table>

Verantwortliche/r
- Prof. Dr. Axel Doering
- Lehrende/r / Dozierende/r
- Prof. Dr. Martin Kammler

Fakultät
- Informatik und Mathematik

Angebotsfrequenz
- Prof. Dr. Axel Doering
- Prof. Dr. Martin Kammler

Lehrform
- Seminaristischer Unterricht (2 SWS) mit Übungen (2 SWS)

Studiensemester
- gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Lehrumfang
- [SWS oder UE]

Zeitaufwand:
- Präsenzstudium: 60h
- Eigenstudium: 90h

Studien- und Prüfungsleistung
- Schriftliche Prüfung 90 Min

Inhalte
- physikalische Messgrößen, Messfehlerbetrachtung
- Elektrizitätslehre: elektrische Größen, Gleichstromkreis, elektrisches Feld, Kondensator, Magnetfeld, Induktion, Wechselstromkreis
- Wellen (Licht, Schall): Interferenz, Beugung
- Optik: Reflexion und Brechung, Lupe, Mikroskop

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- anhand von Überschlagsrechnungen Genauigkeit und Plausibilität physikalischer Messungen zu bewerten (3),
- Grundbegriffe der Elektrizitätslehre wiederzugeben und zu erklären (1),
- Strom, Spannung und Widerstand in linearen Widerstandsnetzwerken zu berechnen (2),
- das Einschalt- und Einschwingverhalten am Kondensator qualitativ zu beschreiben und für einfache Kondensator-Widerstands-Schaltungen zu berechnen (2),
- den Aufbau einfacher optischer abbildender Geräte zu beschreiben (1),
- die Grundbegriffe der physikalischen Beschreibung von Wellenphänomenen zu verstehen sowie Beugung und Interferenz von Wellen zu erklären (3) und
- Messfehler physikalischer Experimente quantitativ zu bewerten (3).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, in einem interdisziplinären Entwicklungsteam effizient zu kommunizieren und aus physikalischen Sachverhalten Informatik-Aufgabenstellungen herzuleiten (3).

Lehrmedien
Tafelvortrag (Powerpoint), Rechenübungen

Literatur

Weitere Informationen zur Lehrveranstaltung
Zuordnung zu Ausbildungszielen:
- G1: Kenntnis des Aufbaus, sowie der Möglichkeiten und Grenzen von Systemen der Informationstechnik
- G3: Fähigkeit zur ingenieurmäßigen Planung und Erstellung von Software-Systemen, sowohl in fachlicher, als auch in planerischer und organisatorischer Hinsicht
- G8: Fähigkeit zum selbständigen Einarbeiten in Spezialgebiete

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum mit Praxisseminar (Industrial Placement)</td>
<td>21 / 22</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praxisbeauftragte-r Medizinische Informatik</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>2.</td>
<td>Pflicht</td>
<td>23</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
90 Kreditpunkte aus den vorangegangenen Semestern oder ergänzende Regelung APO: Vollständiges Ablegen der Grundlagenmodule (Erwerb von 60 Kreditpunkten) und Absolvierung mindestens eines weiteren Studiensemesters in Vollzeit

Empfohlene Vorkenntnisse
Erfolgreicher Abschluss der Module aus dem 1. Studienabschnitt, Besuch der Module AD, DB, KS und SE

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Praktikum mit Praxisseminar</td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Praktikum mit Praxisseminar (Industrial Placement)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum mit Praxisseminar</td>
<td>PR + PS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Klaus Volbert</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>alle Professoren/innen der Fakultät IM</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Praktikum (mind. 16 Wochen Vollzeit im Betrieb)</td>
</tr>
<tr>
<td>• Praxisseminar (1 Tag)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td>23</td>
</tr>
</tbody>
</table>

Zeitaufwand:
- Präsenzstudium
- Eigenstudium

Studien- und Prüfungsleistung
- Nachweis über 16 Wochen Praktikum im Betrieb
- Präsentation mit Erfolg und Praxisbericht mit Erfolg

Inhalte
Im Rahmen von DV-Projekten ist die Mitarbeit in möglichst allen Projektphasen (Systemanalyse, Systemplanung, Implementierung und Systemeinführung) sicherzustellen

Lernziele: Fachkompetenz

Lernziele: Persönliche Kompetenz
Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, typische, in einem Unternehmen anfallende Arbeiten/Aufgaben aus der Informatik alleine und in Teams wiedzugeben (1), zu bearbeiten (2) und zu lösen (3). Sie können eigene und andere Lösungen bewerten und vergleichen. Sie haben einen ersten Eindruck, wie sie die zukünftige Arbeitswelt mit eigenen Beiträgen mitgestalten können.

Lehrmedien
Praxisseminar: Tafel, Notebook, Beamer

Stand: 04.04.2024
Ostbayerische Technische Hochschule Regensburg Seite 73
Literatur

Weitere Informationen zur Lehrveranstaltung

Praktikum und Praxisseminar

- Praktikum: 16 Wochen, die tägliche Arbeitszeit entspricht der üblichen Arbeitszeit der Ausbildungsstelle für Vollbeschäftigte. siehe: §3 Abschnitt 4 der APO, ca. 38,5h Vollzeit im Betrieb (gesamt: ca. 616h)
- Praxisseminar (2 SWS): Präsenz im Seminar, Vor- und Nachbereitung

Zuordnung zu Ausbildungszielen:

- G3: Fähigkeit zur ingenieurmäßigen Planung und Erstellung von Software-Systemen, sowohl in fachlicher, als auch in planerischer und organisatorischer Hinsicht
- G7: Verantwortungsbewusstes Arbeiten in Teams
- G8: Fähigkeit zum selbständigen Einarbeiten in Spezialgebiete

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Engineering</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Axel Doering</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>2.</td>
<td>Pflicht</td>
<td>7</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen:
Anwendungsorientierte Kenntnisse in mindestens einer objektorientierten Programmiersprache

Empfohlene Vorkenntnisse:
Anwendungsorientierte Kenntnisse in C++17 oder höher

Zugeordnete Teilmodule:
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Software Engineering</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Software Engineering

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Engineering</td>
<td>SE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Axel Doering</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Axel Doering</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit Übungen (gesamt 6 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>120h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Schriftliche Prüfung: 90 Min

Inhalte

- Softwareentwicklung als Prozess (V-Modell, RUP, Agile Prozessmodelle)
- Erheben, Analysieren und Spezifizieren von Anforderungen
- Objektorientierte Analyse (statische und dynamische Domänenmodellierung)
- Software-Architektur (Sichten, Architekturansätze: Schichten, MVC, Client-Server, Microservices, Pipes, Repository)
- Objektorientierter Software-Entwurf (Gang-of-Four Entwurfsmuster, GRASP)
- Qualitätsmaße, Verfahren der Qualitätssicherung (Tests, Reviews)
- Aufwandsermittlung (Schätzung, Erfassung)
- DevOps (Versionskontrolle, Build- und Konfigurationsmanagement, Testautomatisierung)
- Regulatorische Aspekte des Software Engineering im Medizinprodukte-Umfeld (Standards / Normen, Zulassungsverfahren EU, Zulassungsverfahren USA)
- UML Notation

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- Probleme beim "Programming in the Large" zu erkennen (1)
- systematische Lösungsansätze zur Beherrschung dieser Probleme zu kennen (1) und der jeweiligen Projektsituation angemessen anzuwenden (3) sowie
- Vorgaben zu Lebenszyklus-Prozessen und Artefakten bei der Entwicklung von Software für Medizineräte umzusetzen (2).
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)
Modulname: Software Engineering

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,</td>
</tr>
<tr>
<td>• eigenständig Software-Entwicklungsaufgaben in allen Phasen des Software-Lebenszyklus</td>
</tr>
<tr>
<td>zu lösen (3),</td>
</tr>
<tr>
<td>• effektiv in iterativ, inkrementell und agil arbeitenden Teams zu kooperieren (2) und</td>
</tr>
<tr>
<td>• von einer Softwarelösung ausgehende Gefährdungen für Patienten, Anwender und Dritte</td>
</tr>
<tr>
<td>kritisch zu bewerten (3).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafelvortrag (Powerpoint)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ian Sommerville. Software Engineering. Pearson Studium, 10. Auflage, 2018</td>
</tr>
<tr>
<td>Titus Winters, Tom Manshreck, Hyrum Wright. Software Engineering at Google. O'Reilly, 2020</td>
</tr>
<tr>
<td>Craig Larman. UML und Patterns angewendet. mitp Professional, 2005</td>
</tr>
<tr>
<td>Eric Freeman, Elisabeth Robson, Kathy Sierra und Bert Bates. Entwurfsmuster von Kopf bis Fuß. O'Reilly, 2021</td>
</tr>
<tr>
<td>Robert Martin. Clean Architectures. Addison-Wesley, 2017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung und Übungen zusammen 6 SWS</td>
</tr>
<tr>
<td>Zuordnung zu Ausbildungszielen:</td>
</tr>
<tr>
<td>• G2: Beherrschung elementarer Methoden der Mathematik und der Informatik zur Analyse und Modellierung.</td>
</tr>
<tr>
<td>• G3: Fähigkeit zur ingenieurmäßigen Planung und Erstellung von Software-Systemen, sowohl</td>
</tr>
<tr>
<td>in fachlicher, als auch in planerischer und organisatorischer Hinsicht.</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Softwarepraktikum (Practical Course in Software Design)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Softwarepraktikum (Practical Course in Software Design)</td>
<td>18</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Prof. Dr. Axel Doering</th>
</tr>
</thead>
</table>

Fakultät

<table>
<thead>
<tr>
<th>Informatik und Mathematik</th>
</tr>
</thead>
</table>

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. 2. Pflicht</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

Mindestens 30 Kreditpunkte aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse

Programmieren 1 und 2

Software Engineering

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Softwarepraktikum</td>
<td>2 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>

Stand: 04.04.2024

Ostbayerische Technische Hochschule Regensburg

Seite 78
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Teilmodul	TM-Kurzbezeichnung
Softwarepraktikum | SWP

Verantwortliche/r	Fakultät
Prof. Dr. Axel Doering | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Axel Doering |

Lehrform
Praktikum (2 SWS)

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>4.</td>
<td>2 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium	Eigenstudium
30h | 120h

Studien- und Prüfungsleistung
Portfolioprüfung zur Projektarbeit

Inhalte
- Ein Softwareprojekt wird in einem kleinen Team methodisch von der Anforderungsspezifikation bis zum getesteten Code vollständig entwickelt und dokumentiert.
- Als Programiersprache wird C++ verwendet.
- Das Projekt wird in 3er bis 6er Teams durchgeführt. Es werden Projektthemen vorgeschlagen, abweichend können nach Bewilligung durch den Dozenten eigene Projektthemen bearbeitet werden.
- Das Projekt wird in einem inkrementellen, iterativen Entwicklungsprozess in Phasen abgewickelt, die an den RUP angelehnt sind. Es finden pro Team mehrere Reviews statt, bei denen festgelegte Arbeitsresultate abzugeben sind und bewertet werden. Zum Teil sind bei den Reviews lauffähige Prototypen zu demonstrieren.
- An einem Schlusstermin wird das Projekt hochschulöffentlich präsentiert. Dabei ist eine lauffähige Software vorzuführen, die den selbst formulierten Softwareanforderungen grundsätzlich genügt, Abweichungen sind zu dokumentieren. Alle überarbeiteten Arbeitsresultate werden abgegeben.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, Phasen und Disziplinen einer Softwareentwicklung nach dem Unified Process - Lebenszyklusmodell zu benennen und inhaltlich zu beschreiben (1). Sie beherrschen mindestens eine objektorientierte Programmersprache sicher (2) und können Werkzeuge für eine verteilte Softwareentwicklung in einem kleinen Team selbstständig, effizient und sicher einsetzen (2). Die Studierenden können den Rahmen des Unfied Process -
Lebenszyklusmodells auf die konkreten Anforderungen ihres Projekts anwenden und in einem Software Development Plan konfektionieren (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, geeignete Verfahren zur Aufwandsschätzung auszuwählen (1), anzuwenden (2) und ihre individuelle Schätzgenauigkeit durch Vergleich von Soll- und Ist-Aufwänden zu verbessern (3). Die Studierenden können eigene Arbeitsergebnisse im Team vorstellen und Reviewtechniken zur objektiven Überprüfung fremder Arbeitsergebnisse einsetzen (2). Die Studierenden sind in der Lage, unter Zeitdruck Lösungsalternativen gegenüberzustellen und auszuwählen (3). Sie können komplexe Entwicklungsaufgaben in Arbeitsschritte untergliedern und deren Abarbeitungsstand systematisch verfolgen (3).

Literatur

- Titus Winter, Tom Manshreck, Hyrum Wright. Software Engineering at Google. O'Reilly 2020

Weitere Informationen zur Lehrveranstaltung

Praktikum (2 SWS)

zuordnung zu Ausbildungsziealen:

- G3: Fähigkeit zur ingenieurmäßigen Planung und Erstellung von Software-Systemen, sowohl in fachlicher, als auch in planerischer und organisatorischer Hinsicht
- G7: Verantwortungsbewusstes Arbeiten in Teams
- G8: Fähigkeit zum selbstständigen Einarbeiten in Spezialgebiete

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Angewandte Medizintechnik (Applied Medical Engineering) | 24

Modulverantwortliche/r	Fakultät
Prof. Dr. Axel Doering | Informatik und Mathematik

Studiensemester gemäß Studienplan	Studienabschnitt	Modultyp	Arbeitsaufwand [ECTS-Credits]
6. | 3. | Pflicht | 7

Verpflichtende Voraussetzungen
Mindestens 100 Kreditpunkte aus dem 1. und 2. Studienabschnitt
Bestehen aller Prüfungen aus dem 1. Studienabschnitt

Empfohlene Vorkenntnisse
Technische Grundlagen der Informatik
Betriebssysteme
Physik

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Angewandte Medizintechnik</td>
<td>6 SWS</td>
<td>7</td>
</tr>
</tbody>
</table>
Teilmodul

<table>
<thead>
<tr>
<th>Angewandte Medizintechnik</th>
<th>AMT</th>
</tr>
</thead>
</table>

Verantwortliche/r

| Prof. Dr. Axel Doering | Informatik und Mathematik |

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Axel Doering</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Seminaristischer Unterricht mit integrierten Übungen und Gerätepraktika (6 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>6 SWS</td>
<td>deutsch</td>
<td>7</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>90h</td>
<td>120h</td>
</tr>
</tbody>
</table>

Inhalte

- Grundlegende Messverfahren und Sensoren (resistive, induktive, kapazitive, piezoelektrische und optische Verfahren und Sensoren)
- Biopotenziale und bioelektrische Phänomene (Potenzialentstehung, Messverfahren der Neurophysiologie, EKG),
- Biosignale (Glättung, einfache Filter, Korrelationsanalyse)
- Biophysikalische Messverfahren (Blutdruck, Blutfluss, Lungenfunktion, Labordiagnostik)
- Diagnostische Geräte und Verfahren (Ultraschall, Radiologische Bildgebung, Ophthalmologische Diagnoseverfahren)
- Therapeutische Geräte und Verfahren (Herzschrittmacher, Beatmung und Anästhesie, Herz-Lungen-Maschine, Hämodialyse)
- Gerätesicherheit und Entwicklungsprozesse (MDR, MPBetreibV, IEC 62304, IEC 80001, IEC 81001-5-1)

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- wichtige physiologische und physikalische Grundlagen zur Wirkungsweise von Medizingeräten anzugeben (1),
- einfache Rechnungen zur Dimensionierung durchzuführen (2),
- Funktionsprinzipien wichtiger Klassen von Medizingeräten zu erklären (3),
- den Einfluss solcher Funktionsprinzipien auf die Softwareentwicklung für solche Geräte zu bewerten (3) und
gesetzliche, regulatorische und normative Vorgaben für die Entwicklung und Betreibung von Medizinprodukten anzugeben (1).
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, in interdisziplinären Entwicklungsteams für Medizinprodukte effizient zu kommunizieren (3).

Lehrmedien
Tafelvortrag (Powerpoint), Gerätepraktika an Versuchsständen

Literatur
- Kramme, Medizintechnik: Verfahren Systeme Informationsverarbeitung. Springer 2017
- Kaschke, Donnerhacke, Rill. Optical Devices in Ophthalmology and Optometry. WILEY-VCH 2014
- Enderle, Bronzino. Introduction to Biomedical Engineering. Academic Press 2011
- Webster, Medical Instrumentation Application and Design. John Wiley 2009

Weitere Informationen zur Lehrveranstaltung
Vorlesung und Übungen (Gerätepraktika) zusammen 6 SWS
Zuordnung zu Ausbildungszielen:
- G1: Kenntnis des Aufbaus, sowie der Möglichkeiten und Grenzen von Systemen der Informationstechnik
- G8: Fähigkeit zum selbständigen Einarbeiten in Spezialgebiete

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	**Modul-KzBez. oder Nr.**
Bachelorarbeit (Bachelor thesis) | 31

Modulverantwortliche/r	**Fakultät**
Vorsitzender der Prüfungskommission | Informatik und Mathematik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>3.</td>
<td>Pflicht</td>
<td>12</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Mindestens 100 Kreditpunkte aus dem 1. und 2. Studienabschnitt
Bestehen aller Prüfungen des 1. Studienabschnitts
Praktikum erfolgreich absolviert

Empfohlene Vorkenntnisse
Alle Module des 1. und 2. Studienabschnitts

Inhalte
Siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bachelorarbeit (Bachelor thesis)</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Bachelorarbeit (Bachelor thesis)

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelorarbeit (Bachelor thesis)</td>
<td>BA</td>
</tr>
</tbody>
</table>

Verantwortliche/r | Fakultät
Prof. Dr. Georgios Raptis | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
alle Dozenten/innen der Fakultät IM

Lehrform
- Selbständige Bearbeitung eines Problems,
- Erstellen einer schriftlichen Ausarbeitung,
- Vorbereiten einer Präsentation

Studiensemester gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>12</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium

<table>
<thead>
<tr>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>360h</td>
</tr>
</tbody>
</table>

Schriftliche Ausarbeitung

Inhalte
Fachspezifisches Thema

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die während des Studiums erworbenen Kompetenzen fachübergreifend auf eine komplexe fachwissenschaftliche Problemstellung anzuwenden (2) und systematisch zu erweitern (3). Sie können wissenschaftliche Quellen effizient recherchieren, auswerten und korrekt zitieren (2). Aus dem erschlossenen Stand der Technik können sie eine technische Aufgabe ableiten und mit wissenschaftlich abgesicherten Methoden bearbeiten (3).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, die Bearbeitung einer komplexen Aufgabe eigenständig in Arbeitspakete zu untergliedern, deren Abarbeitung zu planen, den Arbeitsstand fortlaufend zu verfolgen und termingerecht abzuschließen (2). Sie können technische Inhalte sprachlich angemessen, knapp und genau darstellen und eigene Ergebnisse deutlich vom Stand der Technik abgrenzen (2). Sie sind in der Lage, Lösungsalternativen gegenüberzustellen und begründet abzuwägen (3).
Zuordnung zu Ausbildungszielen:

- G3: Fähigkeit zur ingenieurmäßigen Planung und Erstellung von Software-Systemen, sowohl in fachlicher, als auch in planerischer und organisatorischer Hinsicht.
- G4: Grundlegende Fähigkeit zum wissenschaftlichen Arbeiten
- G8: Fähigkeit zum selbständigen Einarbeiten in Spezialgebiete

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden.
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelorseminar (Bachelor seminar)</td>
<td>32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>3.</td>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen

- Mindestens 100 Kreditpunkte aus dem 1. und 2. Studienabschnitt
- Bestehen aller Prüfungen des 1. Studienabschnitts
- Siehe hierzu auch die Ausführungen zur Lehrveranstaltung/Bachelorseminar: "Studien- und Prüfungsleistung"

Empfohlene Vorkenntnisse

- Alle Module des 1. und 2. Studienabschnitts

Inhalte

siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Bachelorseminar (Bachelor seminar)</td>
<td>2 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Bachelorseminar (Bachelor seminar)

<table>
<thead>
<tr>
<th>Teilmódul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bachelorseminar (Bachelor seminar)</td>
<td>BS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Frank Herrmann</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>alle Dozenten/innen der Fakultät IM</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform: Seminar

Studiensemester
gemäß Studienplan

<table>
<thead>
<tr>
<th>Lehrumfang [SWS oder UE]</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 SWS</td>
<td>deutsch</td>
<td>3</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>60h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

- Referat mit Erfolg ableisten, Zulassungsvoraussetzung: Anmeldung der eigenen Bachelorarbeit

Inhalte

Fachspezifisches Thema

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmóduls sind die Studierenden in der Lage,
- fachspezifische Ergebnisse eigener Arbeit in mündlicher und schriftlicher Form zu präsentieren (2)
- Rückfragen und Lösungsansätze im Team zu diskutieren (3)

Lehrmedien

Tafel, Notebook, Beamer und ggf. weitere Medien

Literatur

Stand: 04.04.2024

Ostbayerische Technische Hochschule Regensburg
Seite 88
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Bachelorseminar (Bachelor seminar)

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuordnung zu Ausbildungszieilen:</td>
</tr>
<tr>
<td>• G3: Fähigkeit zur ingenieurmäßigen Planung und Erstellung von Software-Systemen, sowohl in fachlicher, als auch in planerischer und organisatorischer Hinsicht</td>
</tr>
<tr>
<td>• G8: Fähigkeit zum selbständigen Einarbeiten in Spezialgebiete</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 04.04.2024

Ostbayerische Technische Hochschule Regensburg

Seite 89
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Bildverarbeitung und 3D-Visualisierung (Image Processing and 3D-visualization)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bildverarbeitung und 3D-Visualisierung</td>
<td>26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christoph Palm</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>6.</td>
<td>3.</td>
<td>Pflicht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verpflichtende Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mindestens 100 Kreditpunkte aus dem 1. und 2. Studienabschnitt</td>
</tr>
<tr>
<td>Bestehen aller Prüfungen aus dem 1. Studienabschnitt</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Empfohlene Vorkenntnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmieren 1 und 2</td>
</tr>
<tr>
<td>Medizinische Bildverarbeitung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>siehe Folgeseite</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zugeordnete Teilmodule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr.</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1.</td>
</tr>
<tr>
<td>Teilmodul</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>Bildverarbeitung und 3D-Visualisierung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christoph Palm</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christoph Palm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht (3 SWS) mit Übungen (1 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>gemäß Studienplan</td>
<td>[SWS oder UE]</td>
<td>deutsch</td>
<td>[ECTS-Credits]</td>
</tr>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schriftliche Prüfung: 90 Min</td>
</tr>
</tbody>
</table>
Inhalte

1. Einleitung
 - Generelles Konzept von Maschinellem Lernen
 - Notation und Mathematische Grundlagen
 - Cross Validation
 - Fehlermaße der Klassifikation

2. Merkmalsextraktion in der Bildverarbeitung
 - Histogram of Gradients (HOG)
 - Harris Corner Detection
 - Haralick Maße / Cooccurrence Matrizen
 - Reduktion des Merkmalsraums

3. Klassifikatoren
 - k-Nearest-Neighbor
 - Support Vector Machines
 - Entscheidungsbäume

4. Neuronale Netze
 - Lineare Regression
 - Diskriminanzfunktion
 - Logistische Regression

5. Tiefe Neuronale Netze
 - Grundlagen
 - Aktivierungsfunktionen

6. Training von Tiefen Neuronalen Netzen
 - Gradientenabstieg
 - Backpropagation
 - Regularisierung
 - Normalisierung

7. Faltungsnetzwerke
 - Konzept
 - Visualisierung
 - Augmentierung

8. Architekturen von Faltungsnetzen
 - AlexNet, VGG
 - Residual Net
 - Inception Net

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, ...
... die Grundbegriffe des Maschinellem Lernens und grundlegende Klassifikatoren zu beschreiben (1)
... Methoden zur Merkmalsextraktion und Dimensionsreduktion zu benennen (1) und deren Idee zu skizzieren (2)
... den grundlegenden Aufbau von tiefen neuronalen Netzen zu beschreiben (1), einen gegebenen Aufbau zu analysieren (2) und die Wirkung der einzelnen Module und ihr Zusammenspiel einzuschätzen (3)
... die Besonderheit von neuronalen Netzen für die Bildverarbeitung darzustellen (2)
... einige Architekturen von tiefen Faltungsnetzwerken zu nennen und ihre Unterschiede zu beschreiben (1)
... mit Hilfe von eines Python-basierten Frameworks Klassifikatoren inklusive Merkmalsgenerierung für die Bildverarbeitung zu implementieren (3)

<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
</table>
| Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, ...
| ... fachliche Fragen an den Dozenten zu stellen und inhaltliche Zusammenhänge in korrekter
| ... sich aus gegebenen Materialien wie Videos und Texten Vorlesungsstoff selbstständig zu
| ... mit Hilfe von eines Python-basierten Frameworks Klassifikatoren inklusive
<table>
<thead>
<tr>
<th>Lernziele: Persönliche Kompetenz</th>
</tr>
</thead>
</table>
| Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage, ...
| ... fachliche Fragen an den Dozenten zu stellen und inhaltliche Zusammenhänge in korrekter
| ... sich aus gegebenen Materialien wie Videos und Texten Vorlesungsstoff selbstständig zu
| ... mit Hilfe von eines Python-basierten Frameworks Klassifikatoren inklusive

<table>
<thead>
<tr>
<th>Angebotene Lehrunterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrvideos, Mitschriften und Folien zu den Lehrvideos, Übungsblätter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrvideos, Mitschriften zu Lehrvideos, synchrone Präsentation über Conferencing-Tool</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfred Nischwitz, Max Fischer, Peter Haberäcker, Gudrun Socher: Computergrafik und Bildverarbeitung, Band II, 4. Auflage, Spinger, 2020</td>
</tr>
<tr>
<td>Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani: An Introduction to Statistical Learning with Applications in R, 2015</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zuordnung zu Ausbildungszielen:</td>
</tr>
<tr>
<td>G1: Kenntnis des Aufbaus, sowie der Möglichkeiten und Grenzen von Systemen der Informationstechnik</td>
</tr>
<tr>
<td>G2: Beherrschung elementarer Methoden der Mathematik und der Informatik zur Analyse und Modellierung</td>
</tr>
<tr>
<td>G8: Fähigkeit zum selbstständigen Einarbeiten in Spezialgebiete</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: eHealth Grundlagen

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>eHealth Grundlagen</td>
<td>25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Georgios Raptis</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>3.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Mindestens 100 Kreditpunkte aus dem 1. und 2. Studienabschnitt.
Bestehen aller Prüfungen des 1. Studienabschnitts

Empfohlene Vorkenntnisse
PG1, PG2, Med. Informationssysteme, Med. Dokumentation, Kommunikationssysteme

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>eHealth Grundlagen</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Teilmodul | TM-Kurzbezeichnung
---|---
eHealth Grundlagen | GEH

Verantwortliche/r | Fakultät
Prof. Dr. Georgios Raptis | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Prof. Dr. Georgios Raptis | Jennifer Wolter (LB)

Lehrform
Seminaristischer Unterricht mit Übungen

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:
Präsenzstudium | Eigenstudium
60h | 90h

Studien- und Prüfungsleistung
Schriftliche Prüfung: 90 Min

Inhalte
- eHealth Anwendungen, mHealth, Vernetzung im Gesundheitswesen
- Standards in E-Health, z.B. HL7, DICOM, IHE
- eHealth in der Radiologie, DICOM
- Einrichtungsinterne elektronische Patientenakten
- Web-Services und Service-orientierte Architekturen in eHealth, z.B. die Telematik-Infrastruktur der elektronischen Gesundheitskarte

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Grundbegriffe und elementare Eigenschaften von verteilten Systemen in E-Health, insbesondere von Web-Services zu kennen (1) und zu benutzen (2).
- die Grundlagen von E-Health Anwendungen zu kennen (1) und zu beherrschen (2).
- Standards in E-Health zu nennen (1), aufzuzählen (1), für geeignete Use Cases auszuwählen (2) und bei der Konzeption von E-Health Anwendungen zu benutzen (2).
- gängige Architekturen verteilter Systeme in E-Health zu kennen (1), zu untersuchen (2) und zu beurteilen (3)
- Informationssysteme inkl. Subsysteme im Krankenhaus und in der Arztpraxis und deren Vernetzung zu kennen (1) und zu planen (2)
- die Ziele und Funktionsweise von elektronischen Patientenakten zu kennen (1) und zu untersuchen (2)
geeignete Standards im Gesundheitswesen (insb. HL7, DICOM, IHE) zu kennen (1), zu benutzen (2) bzgl. deren Eignung für gängige Anwendungen und Use Cases zu beurteilen (3) sowie damit verbundene Probleme zu erkennen (2) und zu beheben (3)

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

Literatur

- P. Haas: Gesundheitstelematik - Grundlagen, Anwendungen, Potenziale. Springer Verlag 2006
- Wiki HL7 Deutschland, http://wiki.hl7.de

Weitere Informationen zur Lehrveranstaltung

Empfohlene Voraussetzungen: PG1, PG2, Betriebssysteme, Software-Engineering, Kommunikationssysteme

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Modulbezeichnung (ggf. englische Bezeichnung)	Modul-KzBez. oder Nr.
Fachbezogenes Wahlpflichtmodul 1 | 29

Modulverantwortliche/r	Fakultät
Dekan Fakultät IM | Informatik und Mathematik

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Erfolgreiches Bestehen aller Prüfungen des 1. Studienabschnitts, Mindestens 100 Kreditpunkte aus dem 1.+ 2. Studienabschnitt

Empfohlene Vorkenntnisse
Module des 1. und 2. Studienabschnitts in Abhängigkeit der gewählten Lehrveranstaltung

Inhalte
abhängig von der jeweiligen Lehrveranstaltung
Lehrumfang: 4 SWS

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>[SWS o. UE]</td>
<td>[ECTS-Credits]</td>
</tr>
</tbody>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Hinweise zur Studienabschnittszuordnung:
Z + Modulkürzel: Zweiter Studienabschnitt
D + Modulkürzel: Dritter Studienabschnitt
K + Modulkürzel: Zweiter und Dritter Studienabschnitt

Stand: 04.04.2024
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modul名称: Fachbezogenes Wahlpflichtmodul 2

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachbezogenes Wahlpflichtmodul 2</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dekan Fakultät IM</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>3.</td>
<td>Wahlpflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Erfolgreiches Bestehen aller Prüfungen des 1. Studienabschnitts, Mindestens 100 Kreditpunkte aus dem 1.+ 2. Studienabschnitt

Empfohlene Vorkenntnisse
Module des 1. und 2. Studienabschnitts in Abhängigkeit der gewählten Lehrveranstaltung

Inhalte
abhängig von der jeweiligen Lehrveranstaltung
Lehrumfang: 4 SWS

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
</table>

Hinweise zur Belegungspflicht oder zu Optionen
Hinweise zur Studienabschnittszuordnung:
Z + Modulkürzel: Zweiter Studienabschnitt
D + Modulkürzel: Dritter Studienabschnitt
K + Modulkürzel: Zweiter und Dritter Studienabschnitt

Stand: 04.04.2024
Ostbayerische Technische Hochschule Regensburg
Seite 98
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Gesundheitsökonomie (Health Economy and Processes)

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesundheitsökonomie (Health Economy and Processes)</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael Reng (LB)</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>3.</td>
<td>Pflicht</td>
<td>5</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen:

Mindestens 100 Kreditpunkte aus dem 1. und 2. Studienabschnitt.
Bestehen aller Prüfungen des 1. Studienabschnitts

Empfohlene Vorkenntnisse:

Medizinische Informationssysteme

Inhalte:
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Gesundheitsökonomie</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Gesundheitsökonomie (Health Economy and Processes)

Teilmodul	TM-Kurzbezeichnung
Gesundheitsökonomie | GOK

Verantwortliche/r | Fakultät
Dr. Michael Reng (LB) | Informatik und Mathematik
Lehrende/r / Dozierende/r | Angebotsfrequenz
Dr. Julia Maurer (LB)

Lehrform
Seminaristischer Unterricht mit Übungen (4 SWS)

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Schriftliche Prüfungsleistung
Schriftliche Prüfung 90 Min

Inhalte
Einführung, Darstellung und Diskussion von Grundlagen und Aufgaben der Gesundheitsökonomie mit den beteiligten Akteuren, Strukturen und rechtlichen Rahmenbedingungen insbesondere im deutschen Gesundheitssystem (auch im Vergleich mit anderen Ländern).
Schwerpunkte der Vorlesung sind des Weiteren u.a. die Finanzierung des Gesundheitssystems, die Struktur der Leistungserbringer und Kostenträger, Besonderheiten der Gesundheitsökonomie im Krankenhausbereich sowie auch die Einführung in den Bereich des Controllings und des Qualitätsmanagements.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- eine Übersicht über die Struktur, die Akteure und die Finanzierung des Gesundheitswesens in Deutschland auszuarbeiten (2)
- den Einfluss der Gesundheitsökonomie auf die Versorgungssituation der Patienten sowie auf die Prozessabläufe im Gesundheitswesen darzustellen (1)
- Gesundheitspolitische Fragestellungen zu analysieren und zu beurteilen (3)
- Die wichtigsten Abläufe im Medizincontrolling anzugeben (1)
- die Grundlagen des Qualitätsmanagements zu nennen (1)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- fachliche Inhalte im Team zu bewerten und zu interpretieren (2)
- sich anhand der zur Verfügung gestellten Vorlesungen selbständig weitere vertiefte Themengebieten zu erarbeiten und zu präsentieren (2)

Literatur

- Skript inkl. differenzierter Literaturangaben
- Übergreifende Literatur

Weitere Informationen zur Lehrveranstaltung

Vorlesung und Übungen zusammen 4 SWS
Zuordnung zu Ausbildungszielen:
G6: Verständnis des deutschen Gesundheitssystems und der zentralen Abläufe in Organisationen des Gesundheitswesens sowie der betriebswirtschaftlichen Zusammenhänge.

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Klinische Anwendungen

<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinische Anwendungen</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael Reng (LB)</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6. / 7.</td>
<td>3.</td>
<td>Pflicht</td>
<td>10</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Mindestens 100 Kreditpunkte aus dem 1. und 2. Studienabschnitt
Bestehen aller Prüfungen des 1. Studienabschnitts

Empfohlene Vorkenntnisse
Abhängig von der jeweiligen Lehrveranstaltung.
Das Angebot der Lehrveranstaltung regelt der Studienplan

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Klinische Anwendungen 1 - Radiologie</td>
<td>4 SWS</td>
<td>5</td>
</tr>
<tr>
<td>2.</td>
<td>Klinische Anwendungen 2 - Nuklearmedizin</td>
<td>4 SWS</td>
<td>5</td>
</tr>
</tbody>
</table>
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Klinische Anwendungen

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinische Anwendungen 1 - Radiologie</td>
<td>RAD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christian Stroszczynski (LB)</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende/r / Dozierende/r</th>
<th>Angebotsfrequenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Michael Akers</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Christian Stroszczynski (LB)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminaristischer Unterricht mit integrierten Übungen (zusammen 4 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5 [ECTS-Credits]</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>60h</td>
<td>90h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Klausur: 90 Min

Inhalte

- Technische Grundlagen der Radiologie incl. Magnetresonanz
- Überblick über klinische Anwendungen der Radiologie durch Informatiker(innen)
- Überblick über Schnittbilddiagnostik mit CT, MRT
- Überblick über Qualität Kontrolle medizinischer Geräte
- Überblick über Auswertesysteme für radiologisches Bildmaterial (Bildverarbeitung, Befundungssysteme)
- Überblick über Bildgebung in wissenschaftlichen Studien
- Einblick in die klinische Routine und die Arbeitswelt in der medizinischen Industrie

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
- Grundlagen der Radiologie und des Strahlenschutzes zu nennen (1) und zu erläutern (2),
- die Besonderheiten der klinischen Radiologie zu verstehen (2),
- die Notwendigkeit spezieller Bildnachbereitung für radiologische Bilder zu erkennen und Beispiele zu benennen (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
fachliche Fragen zu stellen und Fragen der Dozentinnen und Dozenten angemessen zu beantworten (2).
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Klinische Anwendungen

<table>
<thead>
<tr>
<th>Lehrmedien</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP-Präsentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiologie spezifische Literatur (wird in der Vorlesung bekanntgegeben)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weitere Informationen zur Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Voraussetzungen:</td>
</tr>
<tr>
<td>- Einführung in die Medizin 1 und 2</td>
</tr>
<tr>
<td>- Medizinische Bildverarbeitung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zuordnung zu Ausbildungszielen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>G5: Grundverständnis anatomischer und physiologischer Zusammenhänge für die wichtigsten Krankheitsbilder</td>
</tr>
<tr>
<td>G6: Verständnis des deutschen Gesundheitssystems und der zentralen Abläufe in Organisationen des Gesundheitswesens sowie der betriebswirtschaftlichen Zusammenhänge</td>
</tr>
</tbody>
</table>

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden

Stand: 04.04.2024

Ostbayerische Technische Hochschule Regensburg

Seite 104
Name des Studiengangs: Bachelor Medizinische Informatik (PO: 20172)

Modulname: Klinische Anwendungen

<table>
<thead>
<tr>
<th>Teilmodul</th>
<th>TM-Kurzbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klinische Anwendungen 2 - Nuklearmedizin</td>
<td>NMED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Dirk Hellwig (LB)</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Dirk Hellwig (LB)</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform	

Seminaristischer Unterricht	

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.</td>
<td>4 SWS</td>
<td>deutsch</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zeitaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstudium</td>
</tr>
<tr>
<td>60h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur: 90 Min</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Überblick über das Fachgebiet Nuklearmedizin</td>
</tr>
<tr>
<td>Grundkenntnisse Radioaktivität</td>
</tr>
<tr>
<td>Rechtsgrundlagen bei Strahlenanwendungen</td>
</tr>
<tr>
<td>Strahlenwirkung/Strahlenschutz</td>
</tr>
<tr>
<td>Grundlagen: Vom Quant zum Bild</td>
</tr>
<tr>
<td>SPECT- und PET-Technologie und Bildrekonstruktionen</td>
</tr>
<tr>
<td>Qualitätskontrolle nuklearmedizinischer Geräte</td>
</tr>
<tr>
<td>Visualisierung von nuklearmedizinischem Bildmaterial</td>
</tr>
<tr>
<td>Auswerte-Systeme für die nuklearmedizinische Diagnostik</td>
</tr>
<tr>
<td>Nuklearmedizinische Therapie und Dosisermittlung</td>
</tr>
<tr>
<td>Anwendung: Schildrüsen-Ziagonagnostik und Radiojodtherapie</td>
</tr>
<tr>
<td>Anwendung: Knochen (Mehrphasen, GK, SPECT, SPECT/CT)</td>
</tr>
<tr>
<td>Anwendung: Niere (ROI, Clearance, Dynamik, SPECT)</td>
</tr>
<tr>
<td>Anwendung: FDG-PET/CT-Diagnostik für Tumor und Entzündung</td>
</tr>
<tr>
<td>Anwendung: Neuronuklearmedizin (SPECT, PET, Bildfusion)</td>
</tr>
<tr>
<td>Anwendung: Herz-Diagnostik (EKG-Triggerung, SPECT und SPECT/CT)</td>
</tr>
<tr>
<td>Anwendung: Tumor-Szintigraphien + Sentinel-Diagnostik</td>
</tr>
<tr>
<td>Konzeption eines nuklearmedizinischen PACS: Der Weg der Bilder</td>
</tr>
<tr>
<td>PACS-Funktionalität</td>
</tr>
<tr>
<td>Dosismanagement-Systeme</td>
</tr>
<tr>
<td>Radiomics in der Nuklearmedizin</td>
</tr>
<tr>
<td>Abrechnungssysteme am Beispiel nuklearmedizinischer Leistungen</td>
</tr>
</tbody>
</table>

Stand: 04.04.2024 Ostbayerische Technische Hochschule Regensburg Seite 105
Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- die Unterschiede zwischen den Fachgebieten Radiologie, Strahlentherapie und Nuklearmedizin zu erklären (2).
- die unterschiedlichen Aspekte der Strahlenexposition und des Strahlenschutzes zu verstehen und ihre Bedeutung einzuordnen (2).
- klinisch relevante physikalische Eigenschaften wichtiger in der Nuklearmedizin verwendeter Radionuklide zu nennen (1).
- bildgebende Geräte und das erzeugende Bildmaterial zu erkennen und zuordnen zu können (2).
- den Aufbau, die messtechnischen Prinzipien und Unterschiede verschiedener nuklearmedizinischer bildgebender Geräte und Untersuchungstechniken zu beschreiben (1) und zu erklären (2).
- die Indikationen zu verschiedenen Szintigraphien verschiedener Anwendungsgebiete zu nennen (1).
- das Wirkprinzip und die Durchführung einer Therapie mit offenen Radionukliden sowie in dem Zusammenhang relevante Krankheitsbilder zu erläutern (2).
- die Archivierung von Bilddaten in einem PACS sowie die Bedeutung einer DICOM-Worklist zu erklären (2).
- Abrechnungsprinzipien mit GKV und PKV sowie dafür erforderliche Kodierungsgrundlagen zu kennen (1).
- den Unterschied zwischen Pseudonymisierung und Anonymisierung zu erklären (2).

Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- fachliche Fragen zu stellen und Fragen der Dozentinnen und Dozenten angemessen zu beantworten (2).

Lehrmedien

- Folienpräsentationen

Literatur

Wird in der Vorlesung genannt

Weitere Informationen zur Lehrveranstaltung

Empfohlene Voraussetzungen:
- Einführung in die Medizin 1 und 2
- Medizinische Bildverarbeitung

** Zuordnung zu Ausbildungszielen:**

- G5: Grundverständnis anatomischer und physiologischer Zusammenhänge für die wichtigsten Krankheitsbilder
- G6: Verständnis des deutschen Gesundheitssystems und der zentralen Abläufe in Organisationen des Gesundheitswesens sowie der betriebswirtschaftlichen Zusammenhänge

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden
<table>
<thead>
<tr>
<th>Modulbezeichnung (ggf. englische Bezeichnung)</th>
<th>Modul-KzBez. oder Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laborpraktikum (Lab course)</td>
<td>27</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Fakultät</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Christoph Palm</td>
<td>Informatik und Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiensemester gemäß Studienplan</th>
<th>Studienabschnitt</th>
<th>Modultyp</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>3.</td>
<td>Pflicht</td>
<td>3</td>
</tr>
</tbody>
</table>

Verpflichtende Voraussetzungen
Mindestens 100 Kreditpunkte aus dem 1. und 2. Studienabschnitt
Bestehen aller Prüfungen des 1. Studienabschnitts

Empfohlene Vorkenntnisse
(Firmen) Praktikum

Inhalte
siehe Folgeseite

Zugeordnete Teilmodule:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Bezeichnung der Teilmodule</th>
<th>Lehrumfang [SWS o. UE]</th>
<th>Arbeitsaufwand [ECTS-Credits]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Laborpraktikum</td>
<td>2 SWS</td>
<td>3</td>
</tr>
</tbody>
</table>
Teilmodul: Laborpraktikum (Lab course)

<table>
<thead>
<tr>
<th>TM-Kurzbezeichnung</th>
<th>LPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verantwortliche/r</td>
<td>Fakultät</td>
</tr>
<tr>
<td>Prof. Dr. Christoph Palm</td>
<td>Informatik und Mathematik</td>
</tr>
<tr>
<td>Lehrende/r / Dozierende/r</td>
<td>Angebotsfrequenz</td>
</tr>
<tr>
<td>Prof. Dr. Axel Doering</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Sebastian Fischer</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Markus Heckner</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Christoph Palm</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Georgios Raptis</td>
<td></td>
</tr>
<tr>
<td>Prof. Dr. Sebastian Stadler</td>
<td></td>
</tr>
</tbody>
</table>

Lehrform

Praktikum oder Seminar

Studiensemester

gemäß Studienplan

<table>
<thead>
<tr>
<th>Studiensemester</th>
<th>Lehrumfang</th>
<th>Lehrsprache</th>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>2 SWS</td>
<td>deutsch</td>
<td>3 ECTS-Credits</td>
</tr>
</tbody>
</table>

Zeitaufwand:

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Eigenstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>30h</td>
<td>60h</td>
</tr>
</tbody>
</table>

Studien- und Prüfungsleistung

Studienarbeit mit Präsentation als Seminar davon 36h Literaturstudium, 20h Anfertigung der Ausarbeitung, 4h Vortragsvorbereitung.

Inhalte

- Das Laborpraktikum bzw. -seminar eignet sich hervorragend zur Einarbeitung in ein Thema, das in der Bachelorarbeit vertieft wird.

Lernziele: Fachkompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,

- ... ein Softwareprojekt im Team professionell abzuwickeln (2)
- ... Spezialkenntnisse in einem eng begrenzten Teilgebiet der Medizinischen Informatik zu nutzen und zur Lösung der Aufgabenstellung zielgerichtet einzusetzen (3)
Lernziele: Persönliche Kompetenz

Nach der erfolgreichen Absolvierung des Teilmoduls sind die Studierenden in der Lage,
• ... sich in einem Team so einzubringen und das Team so mitzuorganisieren, dass ein Projekt erfolgreich durchgeführt werden kann (2)
• ... sich Inhalte durch selbstständige Literaturrecherche zu erarbeiten (projektspezifisch) (2)
• ... projektspezifische englische Fachsprache zu verstehen (1)

Angebotene Lehrunterlagen
projektspezifisch

Lehrmedien
projektspezifisch

Literatur
projektspezifisch

Weitere Informationen zur Lehrveranstaltung

Zuordnung zu Ausbildungszielen:
• G3: Fähigkeit zur ingenieurmäßigen Planung und Erstellung von Software-Systemen, sowohl in fachlicher, als auch in planerischer und organisatorischer Hinsicht
• G4: Grundlegende Fähigkeit zum wissenschaftlichen Arbeiten
• G7: Verantwortungsbewusstes Arbeiten in Teams
• G8: Fähigkeit zum selbständigen Einarbeiten in Spezialgebiete

Die Zahlen in Klammern geben die zu erreichenden Niveaustufen an: 1 - kennen, 2 - können, 3 - verstehen und anwenden